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Abstract 

The HIV-1 and its variants have claimed more than 32.7 million lives since its emergence in 1981, 

while many highly/ active antiretroviral therapies are available but most of these therapeutics have 

long-term side effects. In this study, genomic analysis was performed on 98 HIV-1 genomes to 

determine the most coherent target, which could be utilized for termination of the viral replication 

and the reverse transcriptase enzyme. Following the identification of the target protein, the RNase 

H activity of the reverse transcriptase was selected as the potential target based on its low mutation 

rate and high conservation determined using MAUVE analysis. Afterwards, a library of around 

94.000 small molecule inhibitors was investigated and virtual screening was performed against the 

RNase domain of the reverse transcriptase to identify potential hits. Four compounds with the best 

scores were considered and their interaction within the active site was analysed. Subsequently, all-

atom molecular dynamics simulations and MM-PBSA was performed to validate the stability and 

binding free energy of the hits within the RNase H active site. In computational analyses, ADMET 

assays were performed on the hit compounds to analyse their drug candidacy based on their 

physicochemical and pharmacological properties. Phomoarcherin B, a pentacyclic aromatic 

sesquiterpene naturally found in the endophytic fungus Phomopsis archeri, known for its 
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anticancer properties scored the best in all the experiments and was nominated as a potential 

inhibitor of the HIV-1 reverse transcriptase RNase H activity.                             

Keywords: HIV-1, Reverse Transcriptase, Computational biology, Drug discovery  

 

Introduction 

The Human immunodeficiency virus 1 (HIV-1) remains a global public health issue ever since its 

first identification in 1981, its infection results in progression to Acquired Immunodeficiency 

Syndrome (AIDS) that leaves the immune system of the host defenceless against secondary 

infection1. The World Health Organization refers to HIV-1 as a “global epidemic”2, and according 

to the Joint United Nations Programme on HIV/AIDS (UNAIDS) global statistics around 27.2–

47.8 million individuals have died due to AIDS-related illnesses from its emergence upto 2020, a 

total of 30.2–45.1 million individuals still live with the virus3, most of them living in sub-Saharan 

Africa3,4.  

HIV is a complex retrovirus, like other retroviruses it stores its genome as a pair of ssRNA 

molecule of ~9kb. The genome contains the gag gene which encodes the structural proteins, mainly 

the protein capsid, the matrix protein, and the nucleocapsid, the genome also contains the pol gene 

which encodes the reverse transcriptase enzyme (RT), the protease enzyme, and the integrase 

enzyme and the env gene encode the membrane glycoprotein 120 and glycoprotein 41. HIV 

genome also encodes 6 regulatory proteins such as tat, rev, nef, vif, vpr, and vpu which are 

responsible for its pathogenicity and replication in the host5. Once the virus has been inside the 

host, the capsid disintegrates and the viral RNAs are reverse transcribed into DNA molecules via 

RT which starts with an RNA/DNA hybrid followed by further cleavage of the RNA, and synthesis 

of dsDNA takes place. The proviral dsDNA is further integrated into the host genome via the 
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integrase enzyme where it remains as a reservoir for the virus until the cell is activated upon which 

the cellular transcription and translation mechanisms are hijacked to produce the viral proteins and 

viral RNA genomes6-8. Nucleoside, nucleotide reverse transcriptase inhibitors (NRTIs), non-

nucleoside reverse transcription inhibitors (NNRTIs), protease inhibitors (PIs), entry or fusion 

inhibitors, and integrase strand transfer inhibitors (INSTIs) are the major six classes of 

Antiretroviral therapy drugs targeting 5 different phases of the HIV life cycle9.   

Many additional trials with longer time are necessary to develop novel drugs, but nowadays 

computational biology has shorten these processes period. In cure of AIDS, life-span medicines 

should be administered, however; they cause also immune-suppressive effect with possible other 

expected disorders. Therefore development of new drugs targeting the exact issue is of importance 

using computational biology techniques. Antiretroviral therapy against HIV infection has changed 

a uniformly fatal disease into a potentially chronic disease. There are now 17 drugs in common 

use for HIV treatment9. Patients who can access and adhere to combination therapy should be able 

to achieve durable, potentially lifelong suppression of HIV replication. Despite the unquestioned 

success of antiretroviral therapy, limitations persist. Treatment success needs strict lifelong drug 

adherence. Although the widely used drugs are generally well tolerated, most have some short-

term toxic effects and all have the potential for both known and unknown long-term toxic effects. 

Drug and administration costs limit treatment in resource-poor regions, and are a growing concern 

even in resource rich settings. Finally, complete or near complete control of viral replication does 

not fully restore health. Long-term treated patients who are on an otherwise effective regimen often 

show persistent immune dysfunction and have higher than expected risk for various non-AIDS-

related complications, including heart, bone, liver, kidney, and neurocognitive diseases9.    
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The computational drug discovery methods have gained huge momentum in recent years, 

especially with the availability of supercomputers with less time-intensiveness and lower the cost. 

Virtual screening to identify lead compounds that potentially inhibit several HIV-1 proteins and 

enzymes had been previously researched, including against the RNase domain, however, such 

researches were based solely on molecular docking, pharmacophore, and ADMET assays which 

considers mainly the best docking pose the ligands can have against the target protein in a vacuum-

like condition and are trained on limited training datasets, which may or may not reflect their 

interaction in the physiological cell condition10-12. Extensive computational analysis and molecular 

dynamics leads to finding of potential HIV-1 RT RNase domain has been previously performed 

by Zhang et al. (2016), however, the experiment was limited only to 77 α-hydroxytropolone 

derivatives, which limited the efforts of discovering novel small molecule inhibitors, hence, no 

large-scale extensive computational analysis with all-atom molecular dynamics simulations, 

and/or some form in silico binding free energy calculation validating the potential lead compounds 

have been performed against the HIV-1 RT RNase domain13. 

In our previous studies, we have used MAUVE analysis to determine stable region of SARS-CoV-

2 genome aimed for discovering potential drug candidate matching to proteins playing role in its 

virulence14-16. In this present study, a similar approach was applied for determining the rationale 

of targeting RT for the drug discovery and development efforts of anti-HIV-1 drugs, following the 

establishment of the RT enzyme as the best candidate for drug targeting, a dataset of around 94.000 

small drug-like molecules was obtained from the ZINC15 database, structure-based virtual 

screening against the RT RNase domain was performed via molecular docking, the interaction and 

dynamics of the top lead molecules were further validated using molecular dynamics. The general 

workflow of the study is illustrated in Figure 1.  
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Figure 1. General workflow of the study. Pink shapes indicate external/intermediate inputs, green 

shapes indicate outputs that were analysed, and sky-blue shapes indicate the computational steps. 
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2. Materials and Methods 

2.1. Whole-genome alignment and BLASTx 

A total of 98 HIV-1 complete genomic sequences was retrieved from the Los Alamos HIV 

sequence database17, the sequences were manually selected such that only 2 sequences (where 

applicable) were chosen from each country and the dataset included all the geographic regions 

available (however, this trend was not strictly followed as some countries like the US received 

higher coverage for its size and the number of high-quality sequences deposited whereas other 

countries like India despite its size, due to lack of abundant high-quality sequences deposited, 

received lower coverage). Whole-genome alignment was performed via progressive MAUVE 

algorithm with match seed weight set to automatic calculation, minimum Locally Collinear Blocks 

(LCB) set to default (3 times the minimum match size), progressive Muscle (v3.6) was selected 

for as gap aligner for each LCB, and minimum island size, maximum backbone gap size, minimum 

backbone size were set to 5018,19. The list of all the sequences used for the alignment is included 

in Supplementary Data 1 (SD1) and the whole genome alignment result is included in SD2. The 

alignment result was visualized in Geneious Prime (v2020.1) and the highest conserved continuous 

region with no gaps in the alignment was excised from the alignment and visualized separately in-

depth20. A consensus identity sequence from the conserved fragment was generated using Jalview 

and submitted to NCBI BLASTx with the default parameters (max target sequences 100, expected 

threshold 0.05, word size 6, max match in a query range 0, matrix BLOSUM62, gap costs for 

existence 11, an extension of 1, and compositional adjustments via conditional compositional score 

matrix adjustment), the alignment for the excised fragments are provided in SD3 and the consensus 

sequence is provided in SD421-23. 
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2.2. Molecular docking based virtual screening 

The experimentally determined X-ray diffraction structure of HIV-1 RT with PDB ID 3IG1 was 

retrieved from the Research Collaboratory for Structural Bioinformatics (RCSB) website24,25. The 

missing residues from the structure were added via the PyMol’s builder plugin (open-source 

v2.5.0), the loop regions where the residues were added was refined using MODELLER (v10.1)26-

28. The structure was then cleaned from all heteroatoms except for the cofactor atoms, polar 

hydrogens were added were necessary, and Kollman charges were computed29. A library of 94.545 

annotated anodyne small molecules (ligands) stable at physiological pH and having a charge of 0, 

-1, or -2 was generated from the ZINC15 database30. A grid box with a size of 25 Å X 32 Å X 32 

Å along the X, Y, Z-axis was calculated (a box around the RNase H active site). Virtual screening 

was performed with HIV-1 RT structure against the ligand dataset within the grid box calculated 

at exhaustiveness of 64 via AutoDock Vina (v1.1.2)31. The top 7 molecules with the highest affinity 

scores were screened again with the same configuration but with exhaustiveness of 256, 

compounds that successfully reproduced their scores in the same pose were retained for further 

analysis.  

 

2.3. Protein-ligand interactions profiling 

The best dock pose of the top hit ligands was loaded with the HIV-1 RT to PyMol and all the 

residues within 4 Å from the lead compounds were visualized (i.e. all potential, hydrophobic 

interactions, hydrogen bonds, and ionic interactions) and evaluated, the manually predicted bonds 

were also cross-validated with the TU Dresden’s Protein-Ligand Interaction Profiler (PLIP) 

webserver and only overlapping interactions were considered32.  
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2.4. Molecular dynamics simulation  

The molecular dynamics simulation was performed with the University of Illinois’s Nanoscale 

Molecular Dynamics (NAMD v2.14 CUDA) tool33. OPLS-AA/M force field from William L. 

Jorgensen research group was utilized to generate the topology and parameters for the RT enzyme, 

the same force field was used to parameterize the ligand molecules as well (via LigParGen server 

with 1.14 CM1A charge model)34-37. Each pair of protein-ligand complex was immersed in a 

square box with explicit TIP3P water with a distance of 5 Å was maintained between the edge of 

the box to the protein-ligand complex along each axis, the system was neutralized with Na+ and 

Cl- ions and their final concentration was maintained at 0.15 mol/L (physiological salt 

concentration). The system was minimized for 2 ns to reach its lowest energy relaxed state from 

the X-ray diffraction state, the system was then equilibrated for 5 ns at 310K with periodic 

boundary conditions, Langevin dynamics, particle mesh Ewald (PME) for electrostatics, and 

Langevin piston (at 1 atm) with the protein-ligand complex constrained to allow the water and ions 

equilibrate around the complex, this step was followed by 10 ns equilibration with the constraints 

on the protein side chains released to allow the side chains to relax. The system was then subjected 

to 50 ns equilibration with constraints only on the cofactor Mn2+ cations to allow the system reach 

its equilibrium while maintaining the cofactor in the active site, the root mean square deviation 

(RMSD) of the RT’s backbone (Cα) and root mean square fluctuation (RMSF) of RT’s Cα from 

equilibration simulation was calculated using the 1st frame as the reference point to monitor the 

RT’s behaviour under the simulation system. Finally, a 30 ns production simulation with no 

constraints was performed from which the trajectory was collected for analysis. The outputs were 

written to the trajectory every 1 ps, and  RMSD of RT’s Cα and the lead ligand as a function of 

time elapsed was plotted along with RMSF of the Cα for each residue of the RT throughout the 
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production simulation. The number of hydrogen bonds between the RT enzyme and the respective 

lead ligand throughout the production simulation was also plotted (with thresholds set to, donor-

acceptor distance < 3 Å and angle cut-off = 20° ), all the statistical analysis and visualizations were 

performed using the matplotlib and seaborn libraries38,39. 

 

2.5. Binding free energy calculation via MM/PBSA 

The binding free energy (∆Gbind, Gibbs free energy) between the lead compounds and RT enzyme 

was calculated from the last 10 ns (stable RMSD interval) for each simulation system 

compromising of 1001 snapshots via MM/PBSA single trajectory protocol, the formula in equation 

(2)  was followed to calculate the energy terms for each of the RT, lead compound and RT-lead 

complex using the CaFE plugin (v1.0) and finally equation (4) was used to calculate the 

∆Gbind
40,41,42. The equations derivation and approximation have been provided in SD5.    

 

2.6. In silico physicochemical and ADMET profile analysis 

The top lead compounds were submitted to the SwissADME webserver from the Swiss Institute 

of Bioinformatics to calculate their physiochemical properties and drug-likeness43. The lead 

compounds drug-likeness were evaluated based on 5 filters, Lipinksi rule of 5, Ghose filters, Veber 

filter, Egan filter, and Muegge filter44-48. As for the ADMET analysis, admetSAR (which is also 

used by DrugBank to evaluate drugs) and ADMETlab (v2.0) webserver were collectively used to 

analyse each lead compound49,50.  
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2.7. Additional docking studies  

To evaluate the anti-RNase H activity of Phomoarcherin B, the reverse transcriptase enzyme of  

Feline immunodeficiency virus (FIV) which also exhibits a similar DEDD motif (PDB: 5OVN)51 

was investigated using the same docking approach. Furthermore, docking of Phomoarcherin B 

with RNase H of Bacteriophage T4 (PDB: 1TFR)52 and monomeric reverse transcriptase of 

Moloney murine leukemia virus (MLV, PDB: 4MH8)53 was also investigated.   

 

RESULTS  

Whole-genome alignment & BLASTx 

The results from the whole-genome alignment are provided in Figure 2, the alignment is visualized 

such that each LCB is clustered together, the alignment is zoomed out so as each clustered LCB is 

shown as a black continuous bar, a region with a length of around 2.4 kb within the ≈2.8-5.3 kb 

range from the consensus sequence is highly conserved with almost no gaps in most of the 

sequences. The alignment for this conserved region further shows a very high degree of 

conservation within this region throughout all of the HIV-1 genomes aligned with a gap only in 

one of the sequences (Figure 3).  

The BLASTx results from the consensus sequence have indicated that the highly conserved region 

belongs to the HIV-1 pol gene (NCBI GenBank: QMX87928.1), hence nominating the functional 

proteins from the HIV-1 pol gene (RT, IN, and late-phase protease) as a promising target for the 

development of therapeutics, therefore, further therapeutic screening and analysis were performed 

on one of the main pol gene products, the reverse transcriptase enzyme54.   
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Figure 2. Whole-genome alignment of 98 HIV-1 genomes via progressive MAUVE algorithm, 

with headers for each sequence on the left (header format: organism, subtype, country code, 

sequence length, accession no. and year separated by periods), and identity percentage on top (red 

for low matches and green for high matches). 
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Figure 3. Alignment of the longest highly conserved region within the 98 HIV-1 genomes aligned 

via progressive MAUVE (Adenine in pink, guanine in yellow, thymine in green, and cytosine in 

blue). 
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Virtual Screening and molecular docking 

The virtual screening of the ligand dataset against the HIV-1 RT enzyme nominated 7 compounds 

with significantly high affinities (≥ -8.5 kcal/mol), among them only 4 compounds successfully 

achieved the same affinity in 3 subsequent runs, hence only these 4 compounds were selected and 

further analysed, the top docking poses’ for these 4 compounds are shown in Figure 4, a summary 

of each compound along with their chemical structures is given in Table 1. 
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Figure 4. Docking poses’ for the top 4 hit compounds with highest scores against the HIV-1 RT 

enzyme (surface representation on the left, RNase H domain in firebrick red, fingers subdomain 

in blue, thumb subdomain in green, palm subdomain in magenta, connection subdomain in orange, 

cofactor Mn in cyan beads, chain B in gray, and lead compounds with ball and stick representation 

in light green).   
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Table 1. Brief description of the top hit compounds as shown in Figure 4. 

Compound 

No. 

ZINC ID IUPAC name Docking Score 

(kcal/mol) 

2D chemical structure 

Compound 1 ZINC000103288276 4-hydroxy-3-[5-[5-

(2-

hydroxyphenyl)-

1H-pyrazol-4-yl]-

4,5-dihydro-1H-

pyrazol-3-

yl]chromen-2-one 

-8.6 

 

 

Compound 2 ZINC000013373252 1,3,8,10-

tetrahydroxy-5,5-

dimethyl-5a,6-

dihydro-5H,7H-

[1]benzofuro[3,4-

bc]xanthen-7-one 

-8.5 

 

 

Compound 3 ZINC000015147377 1-hydroxy-

5,7,11,14,18-

pentaoxahexacyclo

[11.11.0.02,10.04,

8.015,23.017,21]te

tracosa-

2,4(8),9,15(23),16,

19,21-heptaen-24-

one 

8.5 
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Interactions profiling 

The interaction between the RT’s RNase H catalytic site with the divalent cation and the top 4 

potential lead compounds are (as shown in Figure 4) was closely analysed and visualized, Figure 

5 (a-d) shows all the potential hydrophobic interactions (with yellow dashes) and hydrogen bonds 

(with magenta dashes) between each residue and lead compound within the RNase H active site, 

the interacting residues from the RT backbone are further expanded (stick representations in dark 

wild willow) to visualize the interacting atoms. The right columns in Figure 5 (e-h) shows all the 

potential interactions between the lead compounds and the cofactor Mn2+ cations (cyan beads, dark 

blue dashes), the residues D443, E478, D498, and D549 (DEDD motif) interacting with the 

cofactor cations are also expanded to visualize the proximity (sky blue sticks) of the interactions, 

a summary table of all the interactions between the lead compounds within the RNase H active 

site has been listed in Table 2 along with their distances. 

Compound 4 ZINC000071318700 (6aR,6bS,10aR,12a

S)-5-Hydroxy-

6b,10,10,12a-

tetramethyl-

6a,7,8,10,10a,11,1

2,12a-octahydro-

1H-

benzo[a]furo[3,4-

h]xanthene-

3,9(6H,6bH)-dione 

8.5 
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Figure 5. Predicted interactions of each lead compound within the RNase H active site of HIV-1 

RT enzyme from their respective top binding pose. all the potential hydrophobic interactions 

(yellow dashes), hydrogen bonds (magenta dashes), and ionic interactions (dark blue dashes) 
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within RNase H active site for (a & e) compound 1, (b & f) compound 2, (c & g) compound 3, and 

(d & h) compound 4 are visualized along with their distances, all lead compounds have shown as 

green sticks with oxygen atoms colored pink and nitrogen atoms blue. RNase H domain with 

cartoon representation (firebrick red, semi-transparent), all residues interacting with their 

respective lead compound are represented with sticks emerging from the protein backbone in dark 

wild willow colour (a-d), the cofactor Mn2+ is shown as cyan beads, and the catalytic site residues 

holding the Mn2+ cations (the DEDD motif) shown as sky blue sticks emerging from the protein 

backbone (e-h), all measurements are in Å unit.    

 

Table 2. Summary of all the interactions between the RNase H active site and the respective lead 

compounds as visualized in Figure 5.   

Interacting compound Interacting residue Distance (Å) Interaction type 

 

 

 

Compound 1 

A445 3.80 Hydrophobic 

Q500 3.69 Hydrophobic 

Y501 3.72 Hydrophobic 

S499 3.59 Hydrogen bond 

Q500 2.58 Hydrogen bond 

Y501 2.28 Hydrogen bond 

Mn 2.40 Ionic 

Mn 2.60 Ionic 

 

 

Compound 2 

 

Q475 3.62 Hydrophobic 

R448 2.64 Hydrogen bond 

Q500 2.47 Hydrogen bond 

Y501 2.03 Hydrogen bond 

Mn 2.50, 3.30* Ionic 
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Mn 2.50 Ionic 

 

Compound 3 

Q500 3.23 Hydrophobic 

H539 3.22 Hydrophobic 

Mn 2.21, 2.64* Ionic 

Mn 2.73, 2.91* Ionic 

 

 

 

Compound 4 

A445 3.85 Hydrophobic 

Q500 3.96 Hydrophobic 

A538 3.66 Hydrophobic 

Q500 2.50 Hydrogen bond 

Y501 2.25 Hydrogen bond 

Mn 2.41 Ionic 

Mn 2.60 Ionic 

* Lead compounds making more than 1 interaction with the same Mn2+ cation have their distances mentioned 

within the same cell separated by a comma. 

 

Molecular dynamics analysis 

The RMSD for the Cα of the RT from each frame throughout the 50 ns equilibration simulation 

was extracted and calculated using the 1st frame in each trajectory as the reference point, Figure  

6-a shows the RT equilibration state throughout the equilibration simulation (plateau in the 40-50 

ns interval). Figure 6-b shows the Cα RMSF calculated using the same 1st frame as the reference 

point for each equilibration simulation. An average RMSF plot for the 4 simulations was also 

calculated by averaging the RMSF of each residue over all of the simulations (Figure 6-c) to 

analyse the overall RMSF of the RT through the course of equilibration under the simulation 

conditions. 
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Figure 6. The behaviour of HIV-1 RT enzyme’s backbone through the equilibration simulation. 

(a) plot of RT Cα RMSD against time throughout the 50 ns equilibration simulation for each of 

the RT-lead compound system, (b) plot of RT Cα RMSF against time throughout the 50 ns 

equilibration simulation for each of the RT-lead compound system, (c) plot of the average RT Cα 

RMSF from the 4 RT-lead compound equilibration simulation. 
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The plots for Cα RMSD against time for each RT-lead compound simulation (Figure 7), Cα RMSF 

for each residue for each RT-lead compound (Figure 8), and the hydrogens bonds formed as a 

function of time in each RT-lead compound system (Figure 9) throughout the 30 ns production 

simulation were plotted to subsequently analyse the motion of the lead compound within the 

simulation system as well as the stability of the RT backbone in presence of the lead compounds. 

 

Figure 7. RT backbone (bb) RMSD plot in reference to the 1st frame throughout the 30 ns 

production simulation for (a) compound 1, (b) compound 2, (c) compound 3, and (d) compound 

4. The cyan line represents the motion of the lead compound in each system (less variation along 

the Y-axis implies less deviation from its initial docked position), similarly. RT backbone RMSD 

(red line) shows the movement of the RT backbone during the simulation (since it plateaued in 

Figure 8, most of the motion is random loop movements and/or vibrations). 
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Figure 8. RMSF plot for each residue of RT backbone in reference to the 1st frame throughout the 

30 ns production simulation for (a) compound 1, (b) compound 2, (c) compound 3, and (d) 

compound 4, the peaks (orange line) represent how much each residue within the RT moved from 

its initial state throughout the simulation (lower fluctuation implies more stable structure). 
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Figure 9. Number of hydrogen bonds formed by each RT-lead compound pair throughout the 

production simulation for (a) compound 1, (b) compound 2, (c) compound 3, and (d) compound 

4. The parameters used to calculate the H bonds were a donor-acceptor distance of less than 3 Å 

and an angle cut-off of 20° (the most guaranteed threshold for H bonds, hence low bias). 

 

Binding free energy calculation via MM/PBSA 

Using the single trajectory approach for MM/PBSA calculation, the 8 energy terms (  

∆𝐸𝑒𝑙𝑒𝑐 , ∆𝐸𝑣𝑑𝑤 , ∆𝐺𝑃𝐵, ∆𝐺𝑆𝐴, ∆𝐺𝑔𝑎𝑠, ∆𝐺𝑠𝑜𝑙, ∆𝐺𝑝𝑜𝑙, ∆𝐺𝑛𝑝𝑜𝑙) were calculated for the RT enzyme, 

lead compound, and RT-lead complex separately from each production simulation, and their total 

sum was used in equation (4) to calculate the binding free energy ∆𝐺𝑏𝑖𝑛𝑑/𝑚𝑚𝑝𝑏𝑠𝑎, the sums of each 

energy term is provided in Table 3 along with their standard deviations, the values of ∆𝐺𝑚𝑚𝑝𝑏𝑠𝑎 
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indicates the spontaneity of the interaction between the RT and lead compounds (i.e. more negative 

= more spontaneous). Detailed value for each energy term for the protein, ligand, and complex is 

separately provided in SD6. 

Table 3. MM/PBSA energy terms for ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥  calculated for each RT-lead pair, energies were 

calculated from the last 10 ns of the production trajectory using the single trajectory approach. 

 

 

 

∆𝐸𝑒𝑙𝑒𝑐 ∆𝐸𝑣𝑑𝑤 ∆𝐺𝑃𝐵  ∆𝐺𝑆𝐴 ∆𝐺𝐺𝑎𝑠 ∆𝐺𝑠𝑜𝑙 ∆𝐺𝑝𝑜𝑙 ∆𝐺𝑛𝑝𝑜𝑙  ∆𝐺𝑚𝑚𝑝𝑏𝑠𝑎  

 

Compound 1 

-28.73±3.76 -49.67±3.40 41.65±2.85 -5.10±0.12 -78.40±5.07 36.56±2.81 12.92±4.48 -54.77±3.44 -41.84±3.90 

 

Compound 2 

-3.68±3.15 -50.89±2.67 30.76±3.84 -5.38±0.10 -54.58±3.97 25.38±3.83 27.08±4.11 -56.28±2.64 -29.20±4.80 

 

Compound 3 

-2.27±1.23 -48.92±2.66 13.21±1.20 -4.90±0.11 -51.20±3.00 8.32±1.18 10.94±1.52 -53.818±2.70 -42.88±3.21 

 

Compound 4 

-2.83±1.95 -54.86±2.56 27.58±3.64 -5.48±0.09 -57.69±3.02 22.11±3.62 24.76±4.22 -60.33±2.54 -35.58±4.84 

 

± indicates the standard deviations. 

All values given energy values are for difference between the complex and sum of protein and ligand, ∆𝑋𝑦 =  ∆𝑋𝑦(𝑐𝑜𝑚𝑝𝑙𝑒𝑥) − (∆𝑋𝑦(𝑝𝑟𝑜𝑡𝑒𝑖𝑛) + ∆𝑋𝑦(𝑙𝑖𝑔𝑎𝑛𝑑)). 

All values are in kcal/mol unit. 
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In silico ADMET assay 

The physiochemical properties of the 4 lead compounds are listed in Table 4 along with their drug-

likeness results, all 4 lead compounds passed the Lipinksi rule of 5, Ghose filters, Veber filter, 

Egan filter, and Muegge filter without any violations. The ADMET profiles of each lead compound 

are also summarized in Table 5 based on the results from admetSAR and ADMETlab. 

Table 4. Physiochemical and drug-likeness properties of the lead compounds based on the 

SwissADME results. 

Physiochemical properties Compound 1 Compound 2 Compound 3 Compound 4 

Molecular weight (g/mol) 388.38 368.34 352.29 384.47 

No. heavy atoms 29 27 26 28 

No. aromatic heavy atoms 21 16 15 6 

No. rotatable bonds 3 0 0 0 

No. H-bond acceptors 6 7 7 5 

No. H-bond donors 4 4 1 1 

Log S (ESOL) -4.15 -4.31 -3.92 -4.68 

Solubility (mg/mL) 2.72e-02 1.82e-02 4.24e-02 8.12e-03 

Solubility class* Moderately soluble Moderately soluble Soluble Moderately soluble 

Lipophilicity (Log Po/w)× 2.30 2.42 2.15 3.67 

Lipinksi rule of 5# Pass (0) Pass (0) Pass (0) Pass (0) 

Ghose filters# Pass (0) Pass (0) Pass (0) Pass (0) 

Veber filters# Pass (0) Pass (0) Pass (0) Pass (0) 

Egan filters# Pass (0) Pass (0) Pass (0) Pass (0) 

Muegge filters Pass Pass Pass Pass 

 

*Based on the Log S (ESOL) scale, insoluble < -10 < poor < -6 < moderate < -4 < soluble < -2 < very < 0 < highly soluble. 

× The values are average of iLOGP, XLOGP3, WLOGP, MLOGP, and SILICOS-IT. 
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ᶫ Based on the BOILED-Egg model55.  

# Numbers within parentheses indicate the number of violations of the respective filter/rule. 

 

Table 5. ADMET profiles of the lead compounds as per results from admetSAR and ADMETlab. 

ADMET properties Compound 1 Compound 2 Compound 3 Compound 4 

 

Absorption 

Gastrointestinal absorptionᶫ High High High High 

Blood-brain barrier permeationᶫ None None None Yes 

 

Distribution 

Plasma binding protein× 96.58% 98.23% 95.53% 94.06% 

Fraction unbound in plasma 2.52% 3.30% 5.60% 7.13% 

 

Metabolism 

CYP450 2C9 Substrate Non-substrate Non-substrate Non-substrate Non-substrate 

CYP450 2D6 Substrate Non-substrate Non-substrate Non-substrate Non-substrate 

CYP450 3A4 Substrate Non-substrate Substrate Non-substrate Substrate 

CYP450 1A2 Inhibitor Inhibitor Inhibitor Non-inhibitor Non-inhibitor 

CYP450 2C9 Inhibitor Inhibitor Inhibitor Non-inhibitor Non-inhibitor 

CYP450 2D6 Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-inhibitor 

CYP450 2C19 Inhibitor Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor 

CYP450 3A4 Inhibitor Inhibitor Non-inhibitor Non-inhibitor Non-inhibitor 

CYP Inhibitory Promiscuity High High Low Low 

 

Excreation×   

T1/2  (hours)¶ < 3 (0.349) >3 (0.52) < 3 (0.113) >3 (0.70) 
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Toxicity 

Rat acute (LD50, mol/kg) 2.43 2.38 2.41 2.71 

TP* (pIGC50, ug/L) 0.46 1.04 0.57 1.38 

Acute oral (LD50 mg/kg) ᶫ III III III III 

Carcinogenicity None None None None 

 

× Based on predictions of ADMETLab 2.050. 

¶ Probability of half-life being greater than 3 hours is given within parentheses, below 0.5 was considered to have T1/2 < 3. 

* Tetrahymena pyriformis toxicity. 

ᶫ Class I ≤ 50 mg/kg, class II > 50 mg/kg, class III > 500 mg/kg, and class IV > 5000 mg/kg. 

The SMILES notation of the lead compounds was used as the input to calculate each of the properties (provided in  

SD11). 

 

Additional docking studies 

Feline immunodeficiency virus (FIV) which also exhibits a similar DEDD motif (PDB: 5OVN) 

was investigated using the same docking approach a similar binding pose with an affinity of -9.0 

kcal/mol was observed detailed results included in SD7. Furthermore, docking of Phomoarcherin 

B with RNase H of Bacteriophage T4 (PDB: 1TFR) and monomeric reverse transcriptase of 

Moloney murine leukemia virus (MLV, PDB: 4MH8) produced affinities of -8.1 kcal/mol and          

-8.3 kcal/mol respectively, further indicating the potency of Phomoarhcerin B as potential anti-

viral RNase H candidate (detailed log files of the docking experiment in SD8 and SD9, 

respectively). 
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Discussion 

As its well known, HIV infections have kept on claiming lives ever since its emergence, while 

modern anti-viral and HAART therapies provide some relief and support for the patients, it also 

comes with its disadvantages and limitations. This study aimed to perform extensive computational 

analysis to discover and evaluate potent novel inhibitors of HIV-1 replication within the host by 

targeting the most coherent target, providing therapeutic options for the patients while at the same 

time accelerating the drug development processes by providing potential leads.  

The mutation rate for HIV-1 has been reported to be 10−4 to 10−2 mutants/clones and with the 

estimated production of 109 virions/day within an infected individual, the virus mutates quite 

efficiently to develop resistance and/or evade the immune system56. However, not all of these 

mutants are expected to survive and replicate as mutations occurring on some genes could be lethal. 

In addition, the most coherent target for drug discovery and development efforts would be the 

phenotypes that mutate less frequently as their chance of developing resistance or evasion, which  

are lower than their highly mutating counterparts. All these information is useful to determine such 

regions with low mutation rate within the HIV-1 genome. The comparative genomics approach 

considers the correlations and differences between the genotype (genome) of closely related 

species or even different variants of the same specie to answer the reasons behind their 

characteristic phenotypes. This method has also been widely used to determine resistance genes 

for several bacteria in the past57-58.   

In this study, we utilized 98 high quality HIV-1 sequence from Los Alamos database and 

performed whole-genome alignment with MAUVE to determine the regions within the HIV-1. 

The genome shows the highest level of consensus among all of the 98 sequences, as visualized in 

Figure 2, a genomic fragment of around 2.4 kb was the longest genomic fragment (the green bars 
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on top of the sequences in Figure 2) with the least variation among the selected 98 sequences. 

BLASTx was used to determine what this genomic region encoded, the pol gene which serves as 

the precursor for 3 important functional proteins of the HIV-1; the viral reverse transcriptase, 

integrase, and late-phase protease, that all of which are coherent targets for drug targeting. Given 

several NNRTI and NRTI has already been approved by the FDA for use and since all of them 

functions by inhibiting the DNA polymerase activity of the RT, our study focused specifically on 

discovering and analysing potent RT RNase H inhibitors, which is equally critical for the viral 

replication as its polymerase activity59-62. 

Considering all the computational analysis reported in this paper and the lead selection criteria 

applied, compound 4 is the best performing lead compound, with a docking score of -8.5 kcal/mol, 

several hydrophobic, hydrogen bond, and ionic interactions with active site residues of the HIV-1 

RNase H and the cofactor Mn2+ cations, less than 1 Å deviation from its initial docked pose 

throughout the 30 ns molecular dynamic simulation, a binding free energy of ≈ -35.58±4.84 

kcal/mol and near-perfect scores on each of the ADMET profiles. To counter the potential bias 

that might rise from using the OPLS-AA force field and to ensure the reproducibility of the results, 

the molecular dynamic simulation of compound 4 with the RT enzyme was repeated with the 

CHARMM36m force field. The RT-Compound 4 system was generated with the same parameters 

via the charmm-gui, the system which was minimized and equilibrated for 10 ns followed by a 

production run of 30 ns from which the trajectory was collected. The outputs were written to the 

trajectory every 10th of a nanosecond as shown in Figure 10,  compound 4 successfully reproduced 

its results and maintained less than 1 Å RMSD deviation (Figure 10, cyan line) from its docked 

pose. Then, further confirming its potential RNase H inhibitory activity, the RT enzyme’s 

backbone RMSD also reached a plateau following the 20 ns time-lapse of the production 
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simulation63,64. A video of the last 10 ns of the production simulation was also generated and is 

included in SD10 (HIV-1 RT RNase H domain as red cartoon, cofactor MN cations as cyan beads, 

and compound 4 as line-green sticks). The video also confirms the contribution of the loop regions 

and the terminal residues to the high protein bb RMSD as they’re moving consecutively throughout 

the simulation. The enzyme-lead complex is also seen to rotate around its axis, further contributing 

to the backbone RMSD rise.  

 

Figure 10. RT backbone (bb) RMSD plot in reference to the 1st frame throughout the 30 ns 

production simulation for compound 4 with the CHARMM 36m force field. The cyan line 

represents the motion of compound 4 (Phomoarcherin B). RT backbone RMSD (red line) shows 

the motion of the RT backbone during the simulation.      

 

Compound 4 which is Phomoarcherin B (PubChem CID 52952104) that is a natural compound 

found in the endophytic fungus Phomopsis archeri, it was first isolated and characterized as a 

pentacyclic aromatic sesquiterpene via spectroscopic analysis by Hemtasin et al. (2011) and tested 
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for antimalaria activity against Plasmodium falciparum and anticancer activities on 

cholangiocarcinoma cell lines65. Anticancer activity was also stated by Bedi et al. (2018) whereas 

there is no in vitro or in vivo assay performed regarding its antiviral or RNase H inhibitory activity, 

making it a potential novel drug candidate that could inhibit HIV-1 replication by inhibiting its 

RNase H activity66. Hence further in vitro assays and clinical trials are necessary to confirm its 

potential as a HIV-1 RNase H inhibitor.         

We believe that the additional docking studies of Phomoarcherin B with Feline immunodeficiency 

virus (FIV), monomeric reverse transcriptase of Moloney murine leukemia virus (MLV) and  

RNase H of Bacteriophage T4 has also provided promising results regarding its anti-RNase H, 

opening the doors for further studies to confirm its potential in vitro and/or in vivo, details provided 

in SD7, SD8 and SD9 (Figure 11).  

 

Figure 11. Top docking pose of Phomoarcherin B (red circle) with the (a) RT of FIV, (b) RT of 

MLV, and  (c) RNase H of the Bacteriophage T4. Phomoarcherin B represented as green sticks 

and bonds, proteins in surface representation colored based on their (helices in cyan, sheets in light 

pink, and loops dry violet). 
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Data availability 

Source data for all figures are available from the first author and/or the corresponding author. 
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