Toward the integration of biosimilars into pediatric rheumatology: adalimumab ABP 501 experience of PeRA research group.


Demirkan F. G., Ulu K., Öztürk K., Karadağ Ş. G., Özdel S., Sönmez H. E., ...Daha Fazla

Expert opinion on biological therapy, cilt.22, sa.2, ss.197-202, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1080/14712598.2021.2002296
  • Dergi Adı: Expert opinion on biological therapy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, EMBASE, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.197-202
  • Anahtar Kelimeler: Lignocellulosic biomass, dilute sulfuric acid hydrolysis, response surface methodology, chemical composition, ETHANOL-PRODUCTION, ENZYMATIC-HYDROLYSIS, STATISTICAL OPTIMIZATION, LIGNOCELLULOSIC BIOMASS, ALKALINE PRETREATMENT, RICE HUSK, BAGASSE, STRAW, SACCHARIFICATION, COMBINATION
  • İstanbul Üniversitesi Adresli: Evet

Özet

Optimization of hydrolysis conditions of lignocellulosic biomass is crucial to able to produce value-added products by fermentation. This study not only determines optimal dilute sulfuric acid (H2SO4) hydrolysis conditions of wheat bran (WB) and rye bran (RB) by using one-factor-at-a-time method and subsequently Box-Behnken design but also elucidates chemical composition of hydrolysates yielded under optimal hydrolysis conditions. Based on the results, optimal hydrolysis conditions of WB and RB were 121 and 130 degrees C of temperature, 1/8 and 1/8 w/v of solid to liquid ratio, 2.66 and 1.58% v/v of dilute H2SO4 ratio, and 30 and 16 min of implementation time, respectively. Hydrolysates obtained from WB and RB at these conditions contained 72.7 (0.58 g sugar/g biomass) and 89.4 g/L (0.72 g sugar/g biomass) of reducing sugar concentration, respectively. Hydrolysis rates of WB and RB were 87.79 and 91.33%, respectively. Main reducing sugar in RB hydrolysate was glucose with 31.17 g/L (0.25 g glucose/g biomass) while glucose and xylose were the main monosaccharides with 20.90 (0.17 g glucose/g biomass) and 18.69 g/L (0.15 g xylose/g biomass) in WB hydrolysate, respectively. With acidic hydrolysis of WB and RB, inhibitors such as phenolics, 5-Hydroxymethylfurfural, 2-Furaldehyde (not for RB), acetic acid, and formic acid (not for WB) formed. Catalytic efficiency values of H2SO4 for WB and RB were 15.2 and 24.4 g /g, respectively, indicating that inhibitor concentration in WB hydrolysate was higher than that of RB. These results indicated that WB and RB have a high potential in production of value-added products by fermentation.