Expert opinion on biological therapy, cilt.22, sa.2, ss.197-202, 2022 (SCI-Expanded)
Optimization of hydrolysis conditions of lignocellulosic biomass is crucial to able to produce value-added products by fermentation. This study not only determines optimal dilute sulfuric acid (H2SO4) hydrolysis conditions of wheat bran (WB) and rye bran (RB) by using one-factor-at-a-time method and subsequently Box-Behnken design but also elucidates chemical composition of hydrolysates yielded under optimal hydrolysis conditions. Based on the results, optimal hydrolysis conditions of WB and RB were 121 and 130 degrees C of temperature, 1/8 and 1/8 w/v of solid to liquid ratio, 2.66 and 1.58% v/v of dilute H2SO4 ratio, and 30 and 16 min of implementation time, respectively. Hydrolysates obtained from WB and RB at these conditions contained 72.7 (0.58 g sugar/g biomass) and 89.4 g/L (0.72 g sugar/g biomass) of reducing sugar concentration, respectively. Hydrolysis rates of WB and RB were 87.79 and 91.33%, respectively. Main reducing sugar in RB hydrolysate was glucose with 31.17 g/L (0.25 g glucose/g biomass) while glucose and xylose were the main monosaccharides with 20.90 (0.17 g glucose/g biomass) and 18.69 g/L (0.15 g xylose/g biomass) in WB hydrolysate, respectively. With acidic hydrolysis of WB and RB, inhibitors such as phenolics, 5-Hydroxymethylfurfural, 2-Furaldehyde (not for RB), acetic acid, and formic acid (not for WB) formed. Catalytic efficiency values of H2SO4 for WB and RB were 15.2 and 24.4 g /g, respectively, indicating that inhibitor concentration in WB hydrolysate was higher than that of RB. These results indicated that WB and RB have a high potential in production of value-added products by fermentation.