EXERCISES 3

1. Determine in each case whether the given sequences has a limit or not. If it does, prove that your stated value is a limit, and if it does not explain why?
(a) $x_{n}=\frac{(-1)^{n}}{n}$
(b) $x_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$
(c) $x_{n}=\frac{1+(-1)^{n}}{n}$
(d) $x_{n}=(-1)^{n} n$
(e) $x_{n}=\sin \left(\frac{n \pi}{2}\right)+\cos n \pi$
(f) $x_{n}=\frac{3 n+1}{5 n-2}$
(g) $x_{n}=\frac{n}{n^{2}+1}$
(h) $x_{n}=\frac{n^{2}}{n^{2}+1}$
(i) $x_{n}=\frac{n^{3}}{n^{2}+1}$
(j) $x_{n}=\frac{n^{2}-n}{n^{3}+1}$
(k) $x_{n}=\frac{1}{n} \sin n$
(l) $x_{n}=\cos \left(\frac{n \pi}{4}\right)$
(m) $x_{n}=\sin n \pi$
(n) $x_{n}=\sqrt{n^{2}+n}-n$
2. Prove that convergence of $\left\{x_{n}\right\}$ implies convergence of $\left\{\left|x_{n}\right|\right\}$. Is the converse true?
3. Prove that if $\lim _{n \rightarrow \infty} x_{n}=+\infty$ and $\lim _{n \rightarrow \infty} y_{n}>-\infty$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=+\infty$.
4. (a) Prove that if $\lim _{n \rightarrow \infty} x_{n}=+\infty$ and $c>0$, then $\lim _{n \rightarrow \infty}\left(c x_{n}\right)=+\infty$.
(b) Prove that if $\lim _{n \rightarrow \infty} x_{n}=+\infty$ and $c<0$, then $\lim _{n \rightarrow \infty}\left(c x_{n}\right)=-\infty$.
5. Suppose that there exists a natural number N_{0} such that $x_{n} \leq y_{n}$ for all $n \geq N_{0}$
(a) Prove that if $\lim _{n \rightarrow \infty} x_{n}=+\infty$, then $\lim _{n \rightarrow \infty} y_{n}=+\infty$.
(b) Prove that if $\lim _{n \rightarrow \infty} y_{n}=-\infty$, then $\lim _{n \rightarrow \infty} x_{n}=-\infty$.
6. Show that

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}0 & \text { if }|a|<1 \\ 1 & \text { if } a=1 \\ +\infty & \text { if } a>1 \\ \text { does not exist } & \text { if } a \leq-1\end{cases}
$$

7. Let $x_{1}=1$ and for $n \geq 1$ let $x_{n+1}=\sqrt{x_{n}+1}$. Show that $\lim _{n \rightarrow \infty} x_{n}=\frac{1+\sqrt{5}}{2}$.
8. Prove the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{n^{4}+8 n}{n^{2}+9}=+\infty$
(b) $\lim _{n \rightarrow \infty}\left(\frac{2^{n}}{n^{2}}+(-1)^{n}\right)=+\infty$
(c) $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$
(d) $\lim _{n \rightarrow \infty}\left(\frac{3^{n}}{n^{3}}-\frac{3^{n}}{n!}\right)=+\infty$
9. Determine in each case whether the given sequences is monotonic or not.
(a) $x_{n}=\frac{3}{2 n-1}$
(b) $x_{n}=\frac{(-1)^{n}}{n^{3}}$
(c) $x_{n}=5 n^{2}$
(d) $x_{n}=\frac{n+1}{2^{n}}$
(e) $x_{n}=\cos \frac{n \pi}{6}$
(f) $x_{n}=(-3)^{n}$
10. Let $\left\{x_{n}\right\}$ be a sequence and let $\lim _{n \rightarrow \infty} x_{n}=x$. Prove that $\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=x$.
11. Let $\left\{x_{n}\right\}$ be a sequence of positive numbers and let $\lim _{n \rightarrow \infty} x_{n}=x \neq 0$. Prove that $\lim _{n \rightarrow \infty} \sqrt[n]{x_{1} \cdot x_{2} \ldots x_{n}}=x$ (Hint: Use logarithmic function in Exercise 10).
12. Let $x_{1}=1$ and $x_{n+1}=\frac{1}{5}\left(x_{n}+3\right)$.
(a) Show that $x_{n}>\frac{3}{4}$ for all $n \in \mathbb{N}$.
(b) Show that $\left\{x_{n}\right\}$ is a monotonically decreasing sequence.
(c) Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists and its value is $\frac{3}{4}$.
13. For each sequence below, i) find its set of subsequential limits, ii) find its $\underline{\lim } x_{n}$ and $\overline{l m} x_{n}$.
(a) $x_{n}=\frac{(-1)^{n}}{n^{2}+3}$
(b) $x_{n}=\frac{n+1}{3 n-1}$
(c) $x_{n}=\frac{2}{5 n+3}$
(d) $x_{n}=\left(-\frac{1}{7}\right)^{n}$
(e) $x_{n}=\sin \frac{n \pi}{6}$
(f) $x_{n}=(-5)^{n}$
(g) $x_{n}=\mathrm{n} \cdot \sin \frac{n \pi}{3}$
(h) $x_{n}=(-1)^{n}-\frac{1}{n}$
14. Prove that $\underline{\lim } x_{n} \leq \overline{\lim } x_{n}$.
15. Prove that $\overline{\lim }\left(-x_{n}\right)=-\underline{\lim } x_{n}$.
16. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences such that $x_{n} \leq y_{n}$ for all $n \geq N$, where N is a fixed natural number. Show that $\underline{\lim } x_{n} \leq \underline{\lim } y_{n}$ and $\overline{\lim } x_{n} \leq \overline{\lim } y_{n}$.
17. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences. Show that $\overline{\lim }\left(x_{n}+y_{n}\right) \leq \overline{\lim } x_{n}+$ $\overline{\lim } y_{n}$ and $\underline{\lim }\left(x_{n}+y_{n}\right) \geq \underline{\lim } x_{n}+\underline{\lim } y_{n}$.
18. Let $\left\{x_{n}\right\}$ be a bounded sequences and let c be a nonnegative real number. Prove that $\underline{\lim }\left(c x_{n}\right)=c \underline{\lim } x_{n}$ and $\overline{\operatorname{lm}}\left(c x_{n}\right)=c \overline{\lim } x_{n}$.
19. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences of nonnegative numbers. Prove that $\overline{\lim }\left(x_{n} y_{n}\right) \leq \overline{l i m} x_{n} . \overline{l i m} y_{n}$.
20. (a) Prove that if $\lim _{n \rightarrow \infty} x_{n}=+\infty$ and $\underline{\lim } y_{n}>0$, then $\underline{\lim }\left(x_{n} y_{n}\right)=+\infty$.
(b) Prove that if $\overline{\lim } x_{n}=+\infty$ and $\underline{\lim } y_{n}>0$, then $\overline{\lim }\left(x_{n} y_{n}\right)=+\infty$.
