EXERCISES 3

1. Determine in each case whether the given sequences has a limit or not. If it does, prove that your stated value is a limit, and if it does not explain why?

(a) $x_n = \frac{(-1)^n}{n}$ (b) $x_n = (-1)^n \left(1 - \frac{1}{n}\right)$ (c) $x_n = \frac{1 + (-1)^n}{n}$ (d) $x_n = (-1)^n n$ (e) $x_n = \sin\left(\frac{n\pi}{2}\right) + \cos n\pi$ (f) $x_n = \frac{3n+1}{5n-2}$ (g) $x_n = \frac{n}{n^2+1}$ (h) $x_n = \frac{n^2}{n^2+1}$ (i) $x_n = \frac{n^3}{n^2+1}$ (j) $x_n = \frac{n^2-n}{n^3+1}$ (k) $x_n = \frac{1}{n} \sin n$ (l) $x_n = \cos\left(\frac{n\pi}{4}\right)$ (m) $x_n = \sin n\pi$ (n) $x_n = \sqrt{n^2 + n} - n$

2. Prove that convergence of $\{x_n\}$ implies convergence of $\{|x_n|\}$. Is the converse true?

- **3.** Prove that if $\lim_{n\to\infty} x_n = +\infty$ and $\lim_{n\to\infty} y_n > -\infty$, then $\lim_{n\to\infty} (x_n + y_n) = +\infty$.
- **4.** (a) Prove that if $\lim_{n\to\infty} x_n = +\infty$ and c > 0, then $\lim_{n\to\infty} (cx_n) = +\infty$.
- **(b)** Prove that if $\lim_{n\to\infty} x_n = +\infty$ and c < 0, then $\lim_{n\to\infty} (cx_n) = -\infty$.
- **5.** Suppose that there exists a natural number N_0 such that $x_n \leq y_n$ for all $n \geq N_0$
- (a) Prove that if $\lim_{n\to\infty} x_n = +\infty$, then $\lim_{n\to\infty} y_n = +\infty$.
- **(b)** Prove that if $\lim_{n\to\infty} y_n = -\infty$, then $\lim_{n\to\infty} x_n = -\infty$.

6. Show that

$$\lim_{n \to \infty} a^n = \begin{cases} 0 & \text{if } |a| < 1\\ 1 & \text{if } a = 1\\ +\infty & \text{if } a > 1\\ \text{does not exist} & \text{if } a \le -1 \end{cases}$$

7. Let $x_1 = 1$ and for $n \ge 1$ let $x_{n+1} = \sqrt{x_n + 1}$. Show that $\lim_{n \to \infty} x_n = \frac{1 + \sqrt{5}}{2}$.

8. Prove the following limits:

(a)
$$\lim_{n \to \infty} \frac{n^4 + 8n}{n^2 + 9} = +\infty$$
 (b) $\lim_{n \to \infty} \left(\frac{2^n}{n^2} + (-1)^n \right) = +\infty$

(c)
$$\lim_{n \to \infty} \frac{a^n}{n!} = 0$$
 (d) $\lim_{n \to \infty} \left(\frac{3^n}{n^3} - \frac{3^n}{n!} \right) = +\infty$

9. Determine in each case whether the given sequences is monotonic or not.

(a)
$$x_n = \frac{3}{2n-1}$$

(b) $x_n = \frac{(-1)^n}{n^3}$
(c) $x_n = 5n^2$
(d) $x_n = \frac{n+1}{2^n}$
(e) $x_n = \cos\frac{n\pi}{6}$
(f) $x_n = (-3)^n$

10. Let $\{x_n\}$ be a sequence and let $\lim_{n\to\infty} x_n = x$. Prove that $\lim_{n\to\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = x$.

11. Let $\{x_n\}$ be a sequence of positive numbers and let $\lim_{n\to\infty} x_n = x \neq 0$. Prove that $\lim_{n\to\infty} \sqrt[n]{x_1 \cdot x_2 \dots x_n} = x$ (Hint: Use logarithmic function in Exercise 10).

12. Let $x_1 = 1$ and $x_{n+1} = \frac{1}{5}(x_n + 3)$.

(a) Show that $x_n > \frac{3}{4}$ for all $n \in \mathbb{N}$.

- (b) Show that $\{x_n\}$ is a monotonically decreasing sequence.
- (c) Prove that $\lim_{n\to\infty} x_n$ exists and its value is $\frac{3}{4}$.

13. For each sequence below, **i**) find its set of subsequential limits, **ii**) find its $\underline{lim}x_n$ and $\overline{lim}x_n$.

(a) $x_n = \frac{(-1)^n}{n^2 + 3}$	(b) $x_n = \frac{n+1}{3n-1}$
(c) $x_n = \frac{2}{5n+3}$	(d) $x_n = \left(-\frac{1}{7}\right)^n$
(e) $x_n = \sin \frac{n\pi}{6}$	(f) $x_n = (-5)^n$
(g) $x_n = n \cdot \sin \frac{n\pi}{3}$	(h) $x_n = (-1)^n - \frac{1}{n}$

14. Prove that $\underline{lim}x_n \leq \overline{lim}x_n$.

15. Prove that $\overline{lim}(-x_n) = -\underline{lim}x_n$.

16. Let $\{x_n\}$ and $\{y_n\}$ be sequences such that $x_n \leq y_n$ for all $n \geq N$, where N is a fixed natural number. Show that $\underline{lim}x_n \leq \underline{lim}y_n$ and $\overline{lim}x_n \leq \overline{lim}y_n$.

17. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences. Show that $\overline{lim}(x_n + y_n) \le \overline{lim} x_n + \overline{lim} y_n$ and $\underline{lim}(x_n + y_n) \ge \underline{lim} x_n + \underline{lim} y_n$.

18. Let $\{x_n\}$ be a bounded sequences and let c be a nonnegative real number. Prove that $\underline{lim}(cx_n) = c\underline{lim}x_n$ and $\overline{lim}(cx_n) = c\overline{lim}x_n$.

19. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences of nonnegative numbers. Prove that $\overline{lim}(x_ny_n) \le \overline{lim} x_n . \overline{lim} y_n$.

20. (a) Prove that if $\lim_{n\to\infty} x_n = +\infty$ and $\underline{\lim} y_n > 0$, then $\underline{\lim} (x_n y_n) = +\infty$.

(b) Prove that if $\overline{lim} x_n = +\infty$ and $\underline{lim} y_n > 0$, then $\overline{lim} (x_n y_n) = +\infty$.