Solutions:

1. If $x_{n}=\frac{n}{5^{n}}=\frac{n}{(1+4)^{n}}=\frac{n}{\binom{n}{0}+\binom{n}{1} 4+\binom{n}{2} 4^{2}+\cdots+\binom{n}{n} 4^{n}}$, then $\lim _{n \rightarrow \infty} x_{n}=0$. Because, if we choose the natural number $N>\frac{1+8 \varepsilon}{8 \varepsilon}$, then for all $n \geq N$ we have $x_{n}=\frac{n}{5^{n}}=\frac{n}{(1+4)^{n}}=\frac{n}{\binom{n}{0}+\binom{n}{1} 4+\binom{n}{2} 4^{2}+\cdots+\binom{n}{n} 4^{n}}<\frac{n}{\binom{n}{2} 4^{2}}=\frac{n}{8 n(n-1)}=\frac{1}{8(n-1)}<\varepsilon$.
2. Let $0<\underline{\lim } y_{n}<+\infty$. Then for every $\varepsilon>0$, there exists a natural number N_{1} such that $N \geq N_{1}$ implies $\mid \inf \left\{y_{n}: n \geq N\right\}-$ $y \mid<\varepsilon$. Thus $\inf \left\{y_{n}: n \geq N\right\}>y-\varepsilon$ for $N \geq N_{1}$, which means that $\inf \left\{y_{n}: n \geq N_{1}\right\}>y-\varepsilon$. So we get $y_{n}>y-\varepsilon$ for all $n \geq$ N_{1}. If we take $\varepsilon=y-m$, where $0<m<y$, then there exists a natural number N_{1} such that $n \geq N_{1}$ implies $m=y-\varepsilon<y_{n}$.

On the other hand, since $\lim _{n \rightarrow \infty} x_{n}=+\infty$ then for every real number M there is a natural number N_{2} such that $n \geq N_{2}$ implies $x_{n}>\frac{M}{m}$. If we take $N=\max \left\{N_{1}, N_{2}\right\}$, then $n \geq N$ implies $x_{n} y_{n}>M$. So for every real number M there is a natural number N such that $n \geq N$ implies $\inf \left\{x_{n} y_{n}: n \geq N\right\}>M$. Hence we get $\underline{\lim }\left(x_{n} y_{n}\right)=+\infty$.
3. a) $\lim _{x \rightarrow 0} \frac{\sqrt[n]{1+x}-1}{x}=\lim _{x \rightarrow 0} \frac{(\sqrt[n]{1+x}-1)\left(\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+\sqrt[n]{1+x}+1\right)}{x\left(\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+\sqrt[n]{1+x}+1\right)}=\lim _{x \rightarrow 0} \frac{x}{x\left(\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+\sqrt[n]{1+x}+1\right)}$

$$
=\lim _{x \rightarrow 0} \frac{1}{\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+\sqrt[n]{1+x}+1}=\frac{1}{n} .
$$

b) $\lim _{x \rightarrow+\infty}\left(\frac{x^{3}}{3 x^{2}-4}-\frac{x^{2}}{3 x+2}\right)=\lim _{x \rightarrow+\infty}\left(\frac{3 x^{4}+2 x^{3}-3 x^{4}+4 x^{2}}{\left(3 x^{2}-4\right)(3 x+2)}\right)=\lim _{x \rightarrow+\infty}\left(\frac{2 x^{3}+4 x^{2}}{9 x^{3}+6 x^{2}-12 x+8}\right)=\frac{2}{9}$.
4. For the right-hand limit at $x=1$ we have,

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{\substack{h \rightarrow 0 \\ h>0}} f(1+h)=\lim _{\substack{h \rightarrow 0 \\ h>0}}\left(\frac{h}{3+2^{1 /(-h)}}\right)=0
$$

For the left-hand limit at $x=1$ we have

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{\substack{h \rightarrow 0 \\ h>0}} f(1-h)=\lim _{\substack{h \rightarrow 0 \\ h>0}}\left(\frac{-h}{3+2^{1 / h}}\right)=0
$$

Since $\lim _{x \rightarrow 1^{+}} f(x)=0=\lim _{x \rightarrow 1^{-}} f(x)$, then the function is continuous at $x=1$.
5. If we write $|f(x)-f(y)|=\left|\frac{x-1}{3 x-2}-\frac{y-1}{3 y-2}\right|=\left|\frac{3 x y-2 x-3 y+2-3 x y+3 x+2 y-2}{(3 x-2)(3 y-2)}\right|=\left|\frac{x-y}{(3 x-2)(3 y-2)}\right|$, then for all x and y in $E=[2,+\infty)$ we have

$$
|f(x)-f(y)|=\left|\frac{x-y}{(3 x-2)(3 y-2)}\right|<\frac{|x-y|}{16}
$$

If we write $|f(x)-f(y)|=\left|\frac{x-y}{(3 x-2)(3 y-2)}\right|<\frac{|x-y|}{16}<\varepsilon$ then we can choose $\delta>0$ such that $|x-y|<16 \varepsilon=\delta$.

