EXERCISES 1

1. Prove that there is no rational number whose squre is 3 or 6 .
2. If p is rational $(p \neq 0)$ and x is irrational, prove that $p+x$ and $p x$ are irrational.
3. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
4. Is the sum of any two irrational numbers always irrational? Why?
5. Is the product of any two irrational numbers always irrational? Why?
6. If a, b, c, d are rational and if x is irratioal, prove that $\frac{a x+b}{c x+d}$ is usually irrational. When do exceptions occur?
7. If $\frac{a}{b}<\frac{c}{d}$ with $b>0, d>0$, prove that $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$.
8. Let a and b be positive integers. Prove that $\frac{a}{b}<\sqrt{2}<\frac{a+2 b}{a+b}$.
9. Prove the following statement for all natural numbers by induction.
(a) $1+3+5+\cdots+(2 n-1)=n^{2}$.
(b) $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(c) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\left[\frac{n(n+1))}{2}\right]^{2}$.
10. Prove that 3 is a factor of $4^{n}-1$ for all natural numbers n by induction.
11. Prove $4^{n-1}>n^{2}$ for $n \geq 3$ by induction.
12. Prove $n^{2}<2^{n}$ for $n \geq 5$ by induction.
13. Let $\binom{n}{k}$ denote the binomial coefficient,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

where $n \geq 0, k \geq 0$ are integers and $0 \leq k \leq n$. Prove the following assertions by induction.
(a) $\binom{n}{k}=\binom{n}{n-k}$
(b) $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}($ for $k>0)$
14. Prove by induction that

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

15. Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.
16. Find the sup and inf of each of the following sets of real numbers:
(a) $E=\left\{x: 3 x^{2}-10 x+3<0\right\}$
(b) $E=\{x:(x-a)(x-b)(x-c)(x-d)<0\}$, where $a<b<c<d$.
(c) All numbers of the form $2^{-p}+3^{-q}+5^{-r}$, where p, q, r take on all positive integer values.
17. Prove that the supremum and the infimum of a set are uniquely determined if they exist.
18. Let A be a nonempty set of real numbers which is bounded below. Let $-A$ be the set of all numbers $-x$, where $x \in A$. Prove that $\inf A=-\sup (-A)$.
19. Let A be a nonempty bounded (both below and above) subset of \mathbb{R}, and let $\emptyset \neq B \subset A$. Show that $\inf A \leq \inf B \leq \sup B \leq \sup A$.
20. Let A and B be two sets of positive real numbers bounded above, and let $\alpha=\sup A, \beta=\sup B$. Let C be set of all products of the form $x y$, where $x \in A$ and $y \in B$. Prove that $\alpha \beta=\sup C$.
21. Prove that

$$
\|\boldsymbol{x}+\boldsymbol{y}\|^{2}+\|\boldsymbol{x}-\boldsymbol{y}\|^{2}=2\left(\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}\right)
$$

if $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{k}$. Interpret this geometrically, as a statement about parallelograms.
22. (Polarization identity) Prove that

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

if $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{k}$.

