EXERCISES 1

- **1.** Prove that there is no rational number whose squre is 3 or 6.
- **2.** If *p* is rational $(p \neq 0)$ and *x* is irrational, prove that p + x and px are irrational.
- **3.** Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- **4.** Is the sum of any two irrational numbers always irrational? Why?
- 5. Is the product of any two irrational numbers always irrational? Why?

6. If *a*, *b*, *c*, *d* are rational and if *x* is irratioal, prove that $\frac{ax+b}{cx+d}$ is usually irrational. When do exceptions occur?

- 7. If $\frac{a}{b} < \frac{c}{d}$ with b > 0, d > 0, prove that $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.
- **8.** Let *a* and *b* be positive integers. Prove that $\frac{a}{b} < \sqrt{2} < \frac{a+2b}{a+b}$.
- 9. Prove the following statement for all natural numbers by induction.

(a)
$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
.
(b) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
(c) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$.

10. Prove that 3 is a factor of $4^n - 1$ for all natural numbers *n* by induction.

11. Prove $4^{n-1} > n^2$ for $n \ge 3$ by induction.

12. Prove $n^2 < 2^n$ for $n \ge 5$ by induction.

13. Let $\binom{n}{k}$ denote the binomial coefficient,

$$\binom{n}{k} = \frac{n!}{k! (n-k)!'}$$

where $n \ge 0, k \ge 0$ are integers and $0 \le k \le n$. Prove the following assertions by induction.

(a)
$$\binom{n}{k} = \binom{n}{n-k}$$
 (b) $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$ (for $k > 0$)

14. Prove by induction that

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

15. Let *E* be a nonempty subset of an ordered set; suppose α is a lower bound of *E* and β is an upper bound of *E*. Prove that $\alpha \leq \beta$.

16. Find the sup and inf of each of the following sets of real numbers:

(a)
$$E = \{x: 3x^2 - 10x + 3 < 0\}$$

(b)
$$E = \{x: (x - a)(x - b)(x - c)(x - d) < 0\}$$
, where $a < b < c < d$.

(c) All numbers of the form $2^{-p} + 3^{-q} + 5^{-r}$, where p, q, r take on all positive integer values.

17. Prove that the supremum and the infimum of a set are uniquely determined if they exist.

18. Let *A* be a nonempty set of real numbers which is bounded below. Let −*A* be the set of all numbers -x, where $x \in A$. Prove that $\inf A = -\sup(-A)$.

19. Let *A* be a nonempty bounded (both below and above) subset of \mathbb{R} , and let $\emptyset \neq B \subset A$. Show that $infA \leq infB \leq supB \leq supA$.

20. Let *A* and *B* be two sets of positive real numbers bounded above, and let $\alpha = supA$, $\beta = supB$. Let *C* be set of all products of the form *xy*, where $x \in A$ and $y \in B$. Prove that $\alpha\beta = supC$.

21. Prove that

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

if $x, y \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.

22. (Polarization identity) Prove that

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \frac{1}{4} (\|\boldsymbol{x} + \boldsymbol{y}\|^2 - \|\boldsymbol{x} - \boldsymbol{y}\|^2)$$

if $x, y \in \mathbb{R}^k$.