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b) Ifx, = i—z = (1;21) = (°)+(1)+(23;(3)+m+(”), then lim,,_,,, x,, = +00. Because, if we choose the natural number N > 6M + 3,
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2. a) We will prove it by induction:
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Assume that the assertion A(n): x,,., > x,, is true.

A(1) is true, because x, = = % >1=x;.

Then we have

VBxpp1+ 1 (f8x, +1
xn+2 = 2 > 2 = xn+1'

This means A(n + 1) is also true. Then by induction, x,,; > x, is true for all natural numbers n. So {x,} is monotonically

increasing.

b) Since {x,} is monotonically increasing, then “BXZ"H > x, or 4x,> — 8x,, — 1 < 0. So we have (xn — 2+2\/§) (xn — %g) < 0or
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0<x,< +7\/_, since the terms of {x,} are positive.
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¢) From a) and b) {x,} is convergent, and say lim,_ x, = . Then lim,_, x,.; = lim
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3. a) lim,_,, 21— 2 To show this limit we have to find a § > 0 such that for every & > 0, |f(x) — L| < & for which
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0 < |x —x0| <6.If we write
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then we can choose § > 0 such that |[x — 1| < & = 6.
b) lim,_,; ﬁ = +00. We need to show that for every real number M there exists § > 0 such that f(x) > M for which
0 <|x—x0| <6.If we choose 0 < § < 1thenwehave [x —3| <8 <1lor2<x<4. So we get
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Then we can choose 0 < § < 1 such that |[x — 3| < \/iﬁ = 4.

4. We can write

(—x, -1<x<0
. 1
=, <x<

f(X)=4 2 x
If 1<x<?2
\ 3’ =

i) For the right-hand limit at x = 0 we have,
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Jim £() = Jim £(0 + h) = Jim (E) ~ 0.
h>0 h>0
For the left-hand limit at x = 0 we have
lim f(x) =lim f(0 — h) = lim(h) = 0.
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h>0 h>0

=— Then we have



Since lim,_o+ f(x) = 0 = lim,_,y- f(x), then the function is continuous at x = 0.

ii) For the right-hand limit at x = 1 we have,
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h>0 h>0
For the left-hand limit at x = 1 we have
li — lim F(1— ) = lim (A=) =
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Since lim,,_+ f(x) = g * % = lim,_,;- f(x), then x = 1 is a discontinuity point of the function. So f has a discontinuity of the first kind at x = 1.



