Solutions:

1. a) If $x_{n}=\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}+1}}$, then $\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right)=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}+1}}=\frac{1}{2}$. Because, if we choose the natural number $N>\frac{1}{\varepsilon^{\prime}}$ then for all $n \geq N$ we have $\left|x_{n}-\frac{1}{2}\right|=\left|\frac{1}{\sqrt{1+\frac{1}{n}+1}}-\frac{1}{2}\right|=\left|\frac{2-\left(\sqrt{1+\frac{1}{n}}+1\right)}{2\left(\sqrt{1+\frac{1}{n}}+1\right)}\right|=\left|\frac{1-\sqrt{1+\frac{1}{n}}}{2\left(\sqrt{1+\frac{1}{n}}+1\right)}\right|=\left|\frac{-\frac{1}{n}}{2\left(\sqrt{1+\frac{1}{n}}+1\right)^{2}}\right|<\frac{1}{n}<\varepsilon$.
b) If $x_{n}=\frac{2^{n}}{n^{2}}=\frac{(1+1)^{n}}{n^{2}}=\frac{\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{n}}{n^{2}}$, then $\lim _{n \rightarrow \infty} x_{n}=+\infty$. Because, if we choose the natural number $N>6 M+3$, then for all $n \geq N$ we have $x_{n}=\frac{2^{n}}{n^{2}}=\frac{(1+1)^{n}}{n^{2}}=\frac{\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\cdots+\binom{n}{n}}{n^{2}}>\frac{\binom{n}{3}}{n^{2}}=\frac{n(n-1)(n-2)}{6 n^{2}}=\frac{n^{3}-3 n^{2}+2 n}{6 n^{2}}>\frac{n}{6}-\frac{1}{2}+\frac{1}{3 n}=\frac{n-3}{6}+\frac{1}{3 n}>$ $\frac{n-3}{6}>M$.
2. a) We will prove it by induction:
$A(1)$ is true, because $x_{2}=\frac{\sqrt{8 x_{1}+1}}{2}=\frac{3}{2}>1=x_{1}$.
Assume that the assertion $A(n): x_{n+1}>x_{n}$ is true.
Then we have

$$
x_{n+2}=\frac{\sqrt{8 x_{n+1}+1}}{2}>\frac{\sqrt{8 x_{n}+1}}{2}=x_{n+1} .
$$

This means $A(n+1)$ is also true. Then by induction, $x_{n+1}>x_{n}$ is true for all natural numbers n. So $\left\{x_{n}\right\}$ is monotonically increasing.
b) Since $\left\{x_{n}\right\}$ is monotonically increasing, then $\frac{\sqrt{8 x_{n}+1}}{2}>x_{n}$ or $4 x_{n}{ }^{2}-8 x_{n}-1<0$. So we have $\left(x_{n}-\frac{2+\sqrt{5}}{2}\right)\left(x_{n}-\frac{2-\sqrt{5}}{2}\right)<0$ or $0<x_{n}<\frac{2+\sqrt{5}}{2}$, since the terms of $\left\{x_{n}\right\}$ are positive.
c) From a) and b) $\left\{x_{n}\right\}$ is convergent, and say $\lim _{n \rightarrow \infty} x_{n}=l$. Then $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \frac{\sqrt{8 x_{n}+1}}{2}$ or $l=\frac{\sqrt{8 l+1}}{2}$. Then we have $l=\frac{2+\sqrt{5}}{2}$.
3. a) $\lim _{x \rightarrow 1} \frac{x+1}{x^{2}+x+1}=\frac{2}{3}$. To show this limit we have to find a $\delta>0$ such that for every $\varepsilon>0,|f(x)-L|<\varepsilon$ for which $0<\left|x-x_{0}\right|<\delta$. If we write

$$
\left|\frac{x+1}{x^{2}+x+1}-\frac{2}{3}\right|=\left|\frac{-2 x^{2}+x+1}{3\left(x^{2}+x+1\right)}\right|=\left|\frac{x-x^{2}+1-x^{2}}{3\left(x^{2}+x+1\right)}\right|=\left|\frac{(1-x)(1+2 x)}{3\left(x^{2}+x+1\right)}\right|<|1-x|<\varepsilon
$$

then we can choose $\delta>0$ such that $|x-1|<\varepsilon=\delta$.
b) $\lim _{x \rightarrow 3} \frac{x}{(x-3)^{2}}=+\infty$. We need to show that for every real number M there exists $\delta>0$ such that $f(x)>M$ for which $0<\left|x-x_{0}\right|<\delta$. If we choose $0<\delta<1$ then we have $|x-3|<\delta<1$ or $2<x<4$. So we get

$$
M<\frac{x}{(x-3)^{2}}<\frac{4}{(x-3)^{2}}
$$

Then we can choose $0<\delta<1$ such that $|x-3|<\frac{2}{\sqrt{M}}=\delta$.
4. We can write

$$
f(x)=\left\{\begin{array}{cl}
-x, & -1 \leq x<0 \\
\frac{x}{2}, & 0 \leq x<1 \\
\frac{x}{3}, & 1 \leq x<2
\end{array}\right.
$$

i) For the right-hand limit at $x=0$ we have,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{\substack{h \rightarrow 0 \\ h>0}} f(0+h)=\lim _{\substack{h \rightarrow 0 \\ h>0}}\left(\frac{h}{2}\right)=0
$$

For the left-hand limit at $x=0$ we have

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{\substack{h \rightarrow 0 \\ h>0}} f(0-h)=\lim _{\substack{h \rightarrow 0 \\ h>0}}(h)=0 .
$$

Since $\lim _{x \rightarrow 0^{+}} f(x)=0=\lim _{x \rightarrow 0^{-}} f(x)$, then the function is continuous at $x=0$.
ii) For the right-hand limit at $x=1$ we have,

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{\substack{h \rightarrow 0 \\
h>0}} f(1+h)=\lim _{\substack{h \rightarrow 0 \\
h>0}}\left(\frac{1+h}{3}\right)=\frac{1}{3} . \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{\substack{h \rightarrow 0 \\
h>0}} f(1-h)=\lim _{\substack{h \rightarrow 0 \\
h>0}}\left(\frac{1-h}{2}\right)=\frac{1}{2} .
\end{aligned}
$$

Since $\lim _{x \rightarrow 1^{+}} f(x)=\frac{1}{3} \neq \frac{1}{2}=\lim _{x \rightarrow 1^{-}} f(x)$, then $x=1$ is a discontinuity point of the function. So f has a discontinuity of the first kind at $x=1$.

