EXERCISES 4

1. Find the domains of the following functions.
(a) $f(x)=\sqrt{x+1}$
(b) $f(x)=\sqrt[3]{2 x+3}$
(c) $f(x)=\frac{1}{4-x^{2}}$
(d) $f(x)=\frac{1}{\sqrt{|x|}-x}$
(e) $f(x)=\frac{1}{3-\ln (x+1)}$
(f) $f(x)=\log \left(\frac{x^{2}-1}{x^{2}+1}\right)$
(g) $f(x)=\sqrt{\ln \left(\frac{5 x-x^{2}}{4}\right)}$
(h) $f(x)=\log _{2}\left(\log _{3}\left(\log _{4} x\right)\right)$
(i) $f(x)=\log _{x-2}\left(-x^{2}+8 x+9\right)$
(j) $f(x)=\log \left(1-\frac{1}{\log \left(x^{2}-5 x+16\right)}\right)$
2. Find the domains of $f \circ g$ and $g \circ f$ for the following functions.
(a) $f(x)=\frac{1+x}{1-x^{\prime}}, \quad g(x)=1+x^{2}$
(b) $f(x)=x^{3}-1, \quad g(x)=\sqrt{x}$
(c) $f(x)=\sqrt{x}, \quad g(x)=\ln \left(\frac{3 x-x^{2}}{2}\right)$
3. Find the domains of $f \pm g, f g, f / g$ and g / f for the following functions.
(a) $f(x)=\sqrt{x^{2}-3 x+2}, \quad g(x)=\frac{1}{\sqrt{3+2 x-x^{2}}}$
(b) $f(x)=\frac{2 x+1}{|x-2|-1^{\prime}} \quad g(x)=\sqrt{3 x^{2}+x+4}$
(c) $f(x)=\sqrt{11+10 x-x^{2}}, \quad g(x)=\frac{1}{\log (x)-1}$
(d) $f(x)=\log \left(x^{2}-9 x+18\right), \quad g(x)=\frac{1}{\sqrt{x^{2}-9}}$
(e) $f(x)=\frac{3}{\sqrt{4-x^{2}}}, \quad g(x)=\ln \left(x^{3}-x\right)$
(f) $f(x)=\frac{1}{x^{2}+1^{\prime}}, \quad g(x)=\sqrt{x-\sqrt{x+1}}$
4. Verify the following limits by $\varepsilon-\delta$ property.
(a) $\lim _{x \rightarrow 1}(3 x-8)=5$
(b) $\lim _{x \rightarrow+\infty} \frac{5 x+1}{3 x+9}=\frac{5}{3}$
(c) $\lim _{x \rightarrow 1} \frac{1}{(1-x)^{2}}=+\infty$
5. Find the the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt[n]{1+x}-1}{x}$
(b) $\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}$
(c) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x(\sqrt{1+x}-1)}$
(d) $\lim _{x \rightarrow 1} \frac{\cos \left(\frac{\pi x}{2}\right)}{1-x}$
(e) $\lim _{x \rightarrow+\infty}\left(\frac{x^{3}}{3 x^{2}-4}-\frac{x^{2}}{3 x+2}\right)$
(f) $\lim _{x \rightarrow 1} \frac{x^{n}-1}{x^{m}-1}(n, m \in \mathbb{N})$
6. Find the the following limits at the indicated points.
(a) $f(x)=\llbracket 1-x \rrbracket+|1-x|, \quad x_{0}=0$.
(b) $f(x)=\frac{6+4^{1 /(x-1)}}{11+4^{1 /(x-1)}}, \quad x_{0}=1$.
(c) $f(x)=\frac{\llbracket x \rrbracket^{2}-9}{x^{2}-9}, \quad x_{0}=3$.
(d) $f(x)=\frac{|x-3|+2 \operatorname{sgn}(x-1)}{\llbracket 2-x \rrbracket}$, left-hand limit at $x_{0}=1$.
7. Show that $f(x)=\left\{\begin{array}{r}\frac{x}{1+e^{1 / x}}, x \neq 0 \\ 0, x=0,\end{array}\right.$ is continuous at $x_{0}=0$ by $\varepsilon-\delta$ property.
8. Decide the continuities of the following functions.
(a) $f(x)=x-\llbracket x \rrbracket$, on the set $E=[-2,2)$.
(b) $f(x)=\llbracket x \rrbracket \llbracket x+1 \rrbracket$, at the point $x_{0}=0$.
(c) $f(x)=\operatorname{sgn}(\sin x)$, on the set $E=[0,2 \pi]$.
(d) $f(x)=\frac{|x|}{\llbracket x \rrbracket+2}$, on the set $E=[-1,2)$.
(e) $f(x)=\frac{1}{x^{2}+3^{\prime}}$ on the set $E=\mathbb{R}$.
(f) $f(x)=2^{1 / x}$, at the point $x_{0}=0$.
(g) $f(x)=\left\{\begin{array}{r}\frac{x-1}{3+2^{1 /(1-x)}}, x \neq 1 \\ 0, x=1\end{array}\right.$, at the point $x_{0}=1$.
(h) $f(x)=\left\{\begin{array}{cl}\frac{2 x^{2}+3}{5}, & -\infty<x \leq 1 \\ 6-5 x, & 1<x<3 \\ x-3, & 3 \leq x<+\infty\end{array}\right.$, on the set $E=\mathbb{R}$.
(i) $f(x)=\left\{\begin{array}{c}\sin \left(\frac{\pi x}{2}\right), 0<x<1 \\ 1+\ln x, 1<x<2 \\ 2, x=1\end{array}\right.$ at the point $x_{0}=1$.
(j) $f(x)=\left\{\begin{array}{r}x^{2}-2 x, x<2 \\ 1, x=2, \\ x-2, x>2\end{array}\right.$ at the point $x_{0}=2$.
(k) $f(x)=\left\{\begin{array}{r}x^{2}, x<1 \\ 2, x=1, \\ -x+4, x>1\end{array}\right.$ at the point $x_{0}=1$.
(l) $f(x)=\left\{\begin{array}{r}\frac{1}{x}, x<0 \\ 2, x=0 \\ x+1, x>0\end{array}\right.$ at the point $x_{0}=0$.
9. Find the value of a if the function $f(x)=\left\{\begin{array}{r}6 \cdot 3^{x}, x<0 \\ 3 a+x, x \geq 0\end{array}\right.$ is continuous at $x_{0}=0$.
10. Show that the function $f(x)=\left\{\begin{array}{l}1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R}-\mathbb{Q}\end{array}\right.$ is discontinuous at every $x \in \mathbb{R}$.
11. Show that the function $f(x)=\left\{\begin{array}{l}x, x \in \mathbb{Q} \\ 0, x \in \mathbb{R}-\mathbb{Q}\end{array}\right.$ is continuous at $x_{0}=0$, and discontinuous at the other real numbers.
12. Show that if the function $-f$ assumes its maximum at $x_{0} \in[a, b]$, then f assumes its minimum at x_{0}.
13. Let f and g be continuous functions on $[a, b]$ such that $f(a) \geq g(a)$ and $f(b) \leq$ $g(b)$. Prove that $f\left(x_{0}\right)=g\left(x_{0}\right)$ for at least one $x_{0} \in[a, b]$.
14. Prove that $x=\cos x$ for some $x \in\left(0, \frac{\pi}{2}\right)$.
15. Prove that $x \cdot 2^{x}=1$ for some $x \in(0,1)$.
16. Prove that a polynomial function of odd degree has at least one real root.
17. Prove that each of the following functions is uniformly continuous on the indicated set by verifying $\varepsilon-\delta$ property.
(a) $f(x)=5 x-2$, on the set $E=\mathbb{R}$.
(b) $f(x)=x^{2}, \quad$ on the set $E=[1,2]$.
(c) $f(x)=\frac{1}{x^{\prime}}$, on the set $E=[1,+\infty)$.
(d) $f(x)=\frac{x}{2 x+1^{\prime}}$ on the set $E=[0,1]$.
(e) $f(x)=\frac{x-1}{3 x-2}$, on the set $E=[2,+\infty)$.
18. (a) Prove that if f is uniformly continuous on a bounded set E, then f is a bounded function on E.
(b) Use (a) to prove that $f(x)=\frac{1}{x^{2}}$ is not uniformly continuous on $(0,1)$.
