
Solutions to Problems in Jackson,

Classical Electrodynamics, Third Edition

Chapter 2

Problem 2.1

A point charge q is brought to a position a distance d away from an
infinite plane conductor held at zero potential. Using the method
of images, find:

(a) the surface-charge density induced on the plane, and plot it;

(b) the force between the plane and the charge by using Coulomb’s
law for the force between the charge and its image;

(c) the total force acting on the plane by integrating σ2/2ε0 over
the whole plane;

(d) the work necessary to remove the charge q from its position to
infinity;

(e) the potential energy between the charge q and its image (com-
pare the answer to part d and discuss).

(f) Find the answer to part d in electron volts for an electron
originally one angstrom from the surface.

(a) We’ll take d to be in the z direction, so the charge q is at (x, y, z) = (0, 0, d).
The image charge is −q at (0, 0,−d). The potential at a point r is

Φ(r) =
q

4πε0

[

1

|r − dk| −
1

|r + dk|

]

The surface charge induced on the plane is found by differentiating this:
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σ = −ε0
dΦ

dz

∣

∣

z=0

= − q

4π

[−(z − d)

|r + dk|3 +
(z + d)

|r + dk|3
]

∣

∣

z=0

= − qd

2π(x2 + y2 + d2)3/2
(1)

We can check this by integrating this over the entire xy plane and verifying
that the total charge is just the value −q of the image charge:

∫

∞

−∞

∫

∞

−∞

σ(x, y)dxdy = − qd

2π

∫

∞

0

∫ 2π

0

rdψdr

(r2 + d2)3/2

= −qd
∫

∞

0

rdr

(r2 + d2)3/2

= −qd
2

∫

∞

d2

u−3/2du

= −qd
2

∣

∣

∣
−2u−1/2

∣

∣

∣

∞

d2

= −q √

(b) The point of this problem is that, for points above the z axis, it doesn’t
matter whether there is a charge −q at (0, 0, d) or an infinite grounded sheet
at z = 0. Physics above the z axis is exactly the same whether we have the
charge or the sheet. In particular, the force on the original charge is the same
whether we have the charge or the sheet. That means that, if we assume the
sheet is present instead of the charge, it will feel a reaction force equal to what
the image charge would feel if it were present instead of the sheet. The force
on the image charge would be just F = q2/16πε0d

2, so this must be what the
sheet feels.

(c) Total force on sheet

=
1

2ε0

∫

∞

0

∫ 2π

0

σ2dA

=
q2d2

4πε0

∫

∞

0

rdr

(r2 + d2)3

=
q2d2

8πε0

∫

∞

d2

u−3du

=
q2d2

8πε0

∣

∣

∣

∣

−1

2
u−2

∣

∣

∣

∣

∞

d2

=
q2d2

8πε0

[

1

2
d−4

]
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=
q2

16πε0d2

in accordance with the discussion and result of part b.

(d) Work required to remove charge to infinity

=
q2

4πε0

∫

∞

d

dz

(z + d)2

=
q2

4πε0

∫

∞

2d

u−2du

=
q2

4πε0

1

2d

=
q2

8πε0d

(e) Potential energy between charge and its image

=
q2

8πε0d

equal to the result in part d.

(f)

q2

8πε0d
=

(1.6 · 10−19 coulombs )2

8π(8.85 · 10−12 coulombsV−1m−1)(10−10 m )

= 7.2 · (1.6 · 10−19 coulombs · 1 V )

= 7.2 eV .

Problem 2.2

Using the method of images, discuss the problem of a point charge
q inside a hollow, grounded, conducting sphere of inner radius a.
Find

(a) the potential inside the sphere;

(b) the induced surface-charge density;

(c) the magnitude and direction of the force acting on q.

(d) Is there any change in the solution if the sphere is kept at a
fixed potential V ? If the sphere has a total charge Q on its
inner and outer surfaces?
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Problem 2.3

A straight-line charge with constant linear charge density λ is located perpendicular
to the x − y plane in the first quadrant at (x0, y0). The intersecting planes x =
0, y ≥ 0 and y = 0, x ≥ 0 are conducting boundary surfaces held at zero potential.
Consider the potential, fields, and surface charges in the first quadrant.

(a) The well-known potential for an isolated line charge at (x0, y0) is Φ(x, y) =
(λ/4πε0) ln(R2/r2), where r2 = (x − x0)

2 + (y − y0)
2 and R is a constant.

Determine the expression for the potential of the line charge in the presence of
the intersecting planes. Verify explicitly that the potential and the tangential
electric field vanish on the boundary surface.

(b) Determine the surface charge density σ on the plane y = 0, x ≥ 0. Plot σ/λ
versus x for (x0 = 2, y0 = 1), (x0 = 1, y0 = 1), and (x0 = 1, y0 = 2).

(c) Show that the total charge (per unit length in z) on the plane y = 0, x ≥ 0 is

Qx = − 2

π
λ tan−1

(

x0

y0

)

What is the total charge on the plane x = 0?

(d) Show that far from the origin [ρ � ρ0, where ρ =
√

x2 + y2 and ρ0 =
√

x2
0 + y2

0 ] the leading term in the potential is

Φ → Φasym =
4λ

πε0

(x0)(y0)(xy)

ρ4
.

Interpret.

(a) The potential can be made to vanish on the specified boundary surfaces
by pretending that we have three image line charges. Two image charges have
charge density −λ and exist at the locations obtained by reflecting the original
image charge across the x and y axes, respectively. The third image charge has
charge density +λ and exists at the location obtained by reflecting the original
charge through the origin. The resulting potential in the first quadrant is

Φ(x, y) =
λ

4πε0

(

ln
R2

r21
− ln

R2

r22
− ln

R2

r23
+ ln

R2

r24

)

=
λ

2πε0
ln
r2r3
r1r4

(2)

where

r21 = [(x− x0)
2 + (y − y0)

2] r22 = [(x+ x0)
2 + (y − y0)

2]
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r23 = [(x − x0)
2 + (y + y0)

2] r24 = [(x+ x0)
2 + (y + y0)

2].

From this you can see that

• when x = 0, r1 = r2 and r3 = r4

• when y = 0, r1 = r3 and r2 = r4

and in both cases the argument of the logarithm in (2) is unity.

(b)

σ = −ε0
d

dy
Φ

= − λ

2π

(

1

r2

dr2
dy

+
1

r3

dr3
dy

− 1

r1

dr1
dy

− 1

r4

dr4
dy

)

∣

∣

y=0

We have dr1/dy = (y − y0)/r1 and similarly for the other derivatives, so

σ = − λ

2π

(

y − y0
r22

+
y + y0
r23

− y − y0
r21

− y + y0
r24

)

∣

∣

y=0

= −y0λ
π

(

1

(x− x0)2 + y2
0

− 1

(x+ x0)2 + y2
0)

)

(c) Total charge per unit length in z

Qx =

∫

∞

0

σdx

= −y0λ
π

[
∫

∞

0

dx

(x− x0)2 + y2
0

−
∫

∞

0

dx

(x+ x0)2 + y2
0

]

For the first integral the appropriate substitution is (x − x0) = y0 tanu, dx =
y0 sec2 udu. A similar substitution works in the second integral.

= −λ
π

[

∫ π/2

tan−1
−

x0

y0

du−
∫ π/2

tan−1
x0

y0

du

]

= −λ
π

[

π

2
− tan−1 −x0

y0
− π

2
+ tan−1 x0

y0

]

= −2λ

π
tan−1 x0

y0
. (3)

The calculations are obviously symmetric with respect to x0 and y0. The
total charge on the plane x = 0 is (3) with x0 and y0 interchanged:

Qy = −2λ

π
tan−1 y0

x0

Since tan−1 x− tan−1(1/x) = π/2 the total charge induced is

Q = −λ
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which is, of course, also the sum of the charge per unit length of the three image
charges.

(d) We have

Φ =
λ

4πε0
ln
r22r

2
3

r21r
2
4

Far from the origin,

r21 = [(x − x0)
2 + (y − y0)

2]

=

[

x2(1 − x0

x
)2 + y2(1 − y0

y
)2

]

≈
[

x2(1 − 2
x0

x
) + y2(1 − 2

y0
y

]

=
[

x2 − 2x0x+ y2 − 2y0y)
]

= (x2 + y2)

[

1 − 2
xx0 + yy0
x2 + y2

]

Similarly,

r22 = (x2 + y2)

[

1 − 2
−xx0 + yy0
x2 + y2

]

r23 = (x2 + y2)

[

1 − 2
xx0 − yy0
x2 + y2

]

r24 = (x2 + y2)

[

1 − 2
−xx0 − yy0
x2 + y2

]

Next,

r21r
2
4 = (x2 + y2)2

[

1 − 4
(xx0 + yy0)

2

(x2 + y2)2

]

r22r
2
3 = (x2 + y2)2

[

1 − 4
(xx0 − yy0)

2

(x2 + y2)2

]

so

Φ =
λ

4πε0
ln





1 − 4 (xx0−yy0)
2

(x2+y2)2

1 − 4 (xx0+yy0)2

(x2+y2)2



 .

The (x2 + y2) term in the denominator grows much more quickly than the
(xx0 + yy0) term, so in the asymptotic limit we can use ln(1 + ε) ≈ ε to find

Φ =
λ

4πε0

[

−4
(xx0 − yy0)

2

(x2 + y2)2
+ 4

(xx0 + yy0)
2

(x2 + y2)2

]

=
λ

4πε0

[−4(x2x2
0 + y2y2

0 − 2xyx0y0) + 4(x2x2
0 + y2y2

0 + 2xyx0y0)

(x2 + y2)2

]
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=
λ

4πε0

[

16xyx0y0
(x2 + y2)2

]

=
4λ

πε0

(xy)(x0y0)

(x2 + y2)2
.

√

Problem 2.4

A point charge is placed a distance d > R from the center of an
equally charged, isolated, conducting sphere of radius R.

(a) Inside of what distance from the surface of the sphere is the
point charge attracted rather than repelled by the charged
sphere?

(b) What is the limiting value of the force of attraction when the
point charge is located a distance a(= d−R) from the surface
of the sphere, if a� R?

(c) What are the results for parts a and b if the charge on the
sphere is twice (half) as large as the point charge, but still
the same sign?

Let’s call the point charge q. The charged, isolated sphere may be replaced
by two image charges. One image charge, of charge q1 = −(R/d)q at radius
r1 = R2/d, is needed to make the potential equal at all points on the sphere.
The second image charge, of charge q2 = q − q1 at the center of the sphere,
is necessary to recreate the effect of the additional charge on the sphere (the
“additional” charge is the extra charge on the sphere left over after you subtract
the surface charge density induced by the point charge q).

The force on the point charge is the sum of the forces from the two image
charges:

F =
1

4πε0

[

qq1
[

d− R2

d

]2 +
qq2
d2

]

(4)

=
q2

4πε0

[ −dR
[d2 −R2]2

+
d2 + dR

d4

]

(5)

As d → R the denominator of the first term vanishes, so that term wins,
and the overall force is attractive. As d → ∞, the denominator of both terms
looks like d4, so the dR terms in the numerator cancel and the overall force is
repulsive.

(a) The crossover distance is found by equating the two bracketed terms in (5):
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dR

[d2 −R2]2
=

d2 + dR

d4

d4R = (d+R)[d2 −R2]2

0 = d5 − 2d3R2 − 2d2R3 + dR4 +R5

I used GnuPlot to solve this one graphically. The root is d/R=1.6178.

(b) The idea here is to set d = R+ a = R(1 + a/R) and find the limit of (4) as
a→ 0.

F =
q2

4πε0

[

−R2(1 + a
R )

[

R2(1 + a
R )2 −R2

]2 +
R2

[

(1 + a
R )2 + (1 + a

R )
]

R4(1 + a
R )4

]

≈ q2

4πε0

[−R2 − aR

4a2R2
+

(2R+ 3a)(R− 4a)

R4

]

The second term in brackets approaches the constant 2/R2 as a→ 0. The first
term becomes −1/4a2. So we have

F → − q2

16πε0a2
.

Note that only the first image charge (the one required to make the sphere an
equipotential) contributes to the force as d → a. The second image charge,
the one which represents the difference between the actual charge on the sphere
and the charge induced by the first image, makes no contribution in this limit.
That means that the limiting value of the force will be as above regardless of
the charge on the sphere.

(c) If the charge on the sphere is twice the point charge, then q2 = 2q − q1 =
q(2 +R/d). Then (5) becomes

F =
q2

4πε0

[

− dR

[d2 −R2]2
+

2d2 + dR

d4

]

and the relevant equation becomes

0 = 2d5 − 4d3R2 − 2d2R3 + 2dR4 +R5.

Again I solved graphically to find d/R = 1.43. If the charge on the sphere is
half the point charge, then

F =
q2

4πε0

[

− dR

[d2 −R2]2
+
d2 + 2dR

2d4

]

and the equation is

0 = d5 − 2d3R2 − 4d2R3 + dR4 + 2R5.

The root of this one is d/R=1.88.
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Problem 2.5

(a) Show that the work done to remove the charge q from a dis-
tance r > a to infinity against the force, Eq. (2.6), of a
grounded conducting sphere is

W =
q2a

8πε0(r2 − a2)
.

Relate this result to the electrostatic potential, Eq. (2.3),
and the energy discussion of Section 1.11.

(b) Repeat the calculation of the work done to remove the charge q
against the force, Eq. (2.9), of an isolated charged conducting
sphere. Show that the work done is

W =
1

4πε0

[

q2a

2(r2 − a2)
− q2a

2r2
− qQ

r

]

.

Relate the work to the electrostatic potential, Eq. (2.8), and
the energy discussion of Section 1.11.

(a) The force is

|F | =
q2a

4πε0

1

y3(1 − a2/y2)2

directed radially inward. The work is

W = −
∫

∞

r

Fdy (6)

=
q2a

4πε0

∫

∞

r

dy

y3(1 − a2/y2)2

=
q2a

4πε0

∫

∞

r

ydy

(y2 − a2)2

=
q2a

4πε0

∫

∞

r2−a2

du

2u2

=
q2a

4πε0

∣

∣

∣

∣

− 1

2u

∣

∣

∣

∣

∞

r2−a2

=
q2a

8πε0(r2 − a2)
(7)

To relate this to earlier results, note that the image charge q′ = −(a/r)q is
located at radius r′ = a2/r. The potential energy between the point charge and
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its image is

PE =
1

4πε0

(

qq′

|r − r′|

)

=
1

4πε0

( −q2a
r(r − a2/r)

)

=
1

4πε0

( −q2a
r2 − a2

)

(8)

Result (7) is only half of (8). This would seem to violate energy conservation. It
would seem that we could start with the point charge at infinity and allow it to
fall in to a distance r from the sphere, liberating a quantity of energy (8), which
we could store in a battery or something. Then we could expend an energy
equal to (7) to remove the charge back to infinity, at which point we would
be back where we started, but we would still have half of the energy saved in
the battery. It would seem that we could keep doing this over and over again,
storing up as much energy in the battery as we pleased.

I think the problem is with equation (8). The traditional expression q1q2/4πε0r
for the potential energy of two charges comes from calculating the work needed
to bring one charge from infinity to a distance r from the other charge, and it
is assumed that the other charge does not move and keeps a constant charge
during the process. But in this case one of the charges is a fictitious image
charge, and as the point charge q is brought in from infinity the image charge
moves out from the center of the sphere, and its charge increases. So the simple
expression doesn’t work to calculate the potential energy of the configuration,
and we should take (7) to be the correct result.

(b) In this case there are two image charges: one of the same charge and location
as in part a, and another of charge Q − q′ at the origin. The work needed to
remove the point charge q to infinity is the work needed to remove the point
charge from its image charge, plus the work needed to remove the point charge
from the extra charge at the origin. We calculated the first contribution above.
The second contribution is

−
∫

∞

r

q(Q− q′)dy

4πε0y2
= − 1

4πε0

∫

∞

r

[

qQ

y2
+
q2a

y3

]

dy

= − 1

4πε0

∣

∣

∣

∣

−qQ
y

− q2a

2y2

∣

∣

∣

∣

∞

r

= − 1

4πε0

[

qQ

r
+
q2a

2r2

]

so the total work done is

W =
1

4πε0

[

q2a

2(r2 − a2)
− q2a

2r2
− qQ

r

]

.
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Review of Green’s Functions

Some problems in this and other chapters use the Green’s function technique.
It’s useful to review this technique, and also to establish my conventions since
I define the Green’s function a little differently than Jackson.

The whole technique is based on the divergence theorem. Suppose A(x) is
a vector valued function defined at each point x within a volume V . Then

∫

V

(∇ · A(x′)) dV ′ =

∮

S

A(x′) · dA′ (9)

where S is the (closed) surface bounding the volume V . If we take A(x) =
φ(x)∇ψ(x) where φ and ψ are scalar functions, (9) becomes

∫

V

[

(∇φ(x′)) · (∇ψ(x′)) + φ(x′)∇2ψ(x′)
]

dV ′ =

∮

S

φ(x′)
∂ψ

∂n

∣

∣

∣

∣

x
′

dA′

where ∂ψ/∂n is the dot product of ~∇ψ with the outward normal to the surface
area element. If we write down this equation with φ and ψ switched and subtract
the two, we come up with

∫

V

[

φ∇2ψ − ψ∇2φ
]

dV ′ =

∮

S

[

φ
∂ψ

∂n
− ∂φ

∂n

]

dA′. (10)

This statement doesn’t appear to be very useful, since it seems to require that
we know φ over the whole volume to compute the left side, and both φ and
∂φ/∂n on the boundary to compute the right side. However, suppose we could
choose ψ(x) in a clever way such that ∇2ψ = δ(x − x0) for some point x0

within the volume. (Since this ψ is a function of x which also depends on x0

as a parameter, we might write it as x0
(x).) Then we could use the sifting

property of the delta function to find

φ(x0) =

∫

V

[

x0
(x′)∇2φ(x′)

]

dV ′ +

∮

S

[

φ(x′)
∂ x0

∂n

∣

∣

∣

∣

x
′

− x0
(x′)

∂φ

∂n

∣

∣

∣

∣

x
′

]

dA′.

If φ is the scalar potential of electrostatics, we know that ∇2ψ(x′) = −ρ(x′)/ε0,
so we have

φ(x0) = − 1

ε0

∫

V
x0

(x′)ρ(x′)dV ′ +

∮

S

[

φ(x′)
∂ x0

∂n

∣

∣

∣

∣

x
′

− x0
(x′)

∂φ

∂n

∣

∣

∣

∣

x
′

]

dA′.

(11)
Equation (11) allows us to find the potential at an arbitrary point x0 as

long as we know ρ within the volume and both φ and ∂φ/∂n on the boundary.
boundary. Usually we do know ρ within the volume, but we only know either φ
or ∂φ/∂n on the boundary. This lack of knowledge can be accommodated by
choosing ψ such that either its value or its normal derivative vanishes on the
boundary surface, so that the term which we can’t evaluate drops out of the
surface integral. More specifically,
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• if we know φ but not ∂φ/∂n on the boundary (“Dirichlet” boundary con-
ditions), we choose ψ such that ψ = 0 on the boundary. Then

φ(x0) = − 1

ε0

∫

V
x0

(x′)ρ(x′)dV ′ +

∮

S

φ(x′)
∂ x0

∂n

∣

∣

∣

∣

x
′

dA′. (12)

• if we know ∂φ/∂n but not φ on the boundary (“Neumann” boundary
conditions), we choose ψ such that ∂ψ/∂n = 0 on the boundary. Then

φ(x0) = − 1

ε0

∫

V
x0

(x′)ρ(x′)dV ′ +

∮

S

φx0
(x′)

∂φ

∂n

∣

∣

∣

∣

x
′

dA′. (13)

Again, in both cases the function x0
(x) has the property that

∇2
x0

(x) = δ(x − x0).


