Differential Equations I Homework 3 05.12.2016

1. Find the general solution of the differential equation

(a)
$$y'' + (y')^2 + 1 = 0$$
 Ans: $y = c_1 + \ln \cos (x - c_2)$

(b)
$$(1+x^2)y'' + 2xy' = \frac{2}{x^3}$$
 Ans: $y = c_1 + c_2 \arctan x + \frac{1}{x}$

(c)
$$xy'' - y' = \frac{-2}{x} - \ln x$$
 $Ans: y = c_1 x^2 + c_2 + (x+1) \ln x$

(d)
$$y''' + y'' = x^2$$
 $Ans: y = c_1 e^{-x} + c_2 x + c_3 + \frac{x^2 (x^2 - 4x + 12)}{12}$

(e)
$$yy'' + (y')^3 = 0$$
 Ans: $x = c_1 + c_2 y + y \ln y$

(f)
$$yy'' + (y')^2 = 2$$
 $Ans: y^2 = 2x^2 + c_1x + c_2$

2. Find the general solution of the differential equation by using the method undetermined coefficients

(a)
$$y'' + 4y = 4e^{2x} + 8\sin 2x$$

(b)
$$y'' - y = 12e^{2x} + e^x \sin 2x$$

(c)
$$y''' + 3'' + 2y' = -18x^2 + 6x$$

(d)
$$y''' - y'' - 4y' + 4y = 2x^2 - 4x - 1$$

(e)
$$y'' - 4y' + 4y = 8x^3e^{2x} + 12e^{-x} - 9x + 8$$
 (e) $y'' - 6y' + 9y = x^4e^x + x^3e^{2x} + x^2e^{3x}$

(e)
$$y'' - 6y' + 9y = x^4 e^x + x^3 e^{2x} + x^2 e^{3x}$$

(g)
$$y'' + 9y = e^{3x} + e^{-3x} + e^{3x} \sin 3x$$

(h)
$$y^{(iv)} + 2y'' + y = x^2 \cos x$$

(i)
$$y^{(iv)} + 10y'' + 9y = \sin x \sin 2x$$

(h)
$$y^{(vi)} + 2y^{(v)} + 5y^{(iv)} = x^3 + x^2e^{-x} + e^{-x}\sin 2x$$

3. Find the general solution of the differential equations

(a)
$$(xp)^2 + xyp - 6y^2 = 0$$

(b)
$$xp^2 + (y-x^2-1)p - x(y-1) = 0$$

(c)
$$xp^2 - 2yp + 4x = 0$$

(d)
$$(yp)^2 + 3xp - y = 0$$

(e)
$$p^2 - xp + y = 0$$

(f)
$$y = (1+p)x + p^2$$

4. Find the general solution of the Bernouille differential equations and solutions with given initial conditions.

(a)
$$\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}$$
, $y(1) = 2$

(b)
$$x \frac{dy}{dx} + y = (xy)^{3/2}$$
, $y(1) = 4$

(c)
$$x^2 \frac{dy}{dx} + xy = \frac{y^3}{x}$$
, $y(1) = 1$ (d) $4xy \frac{dy}{dx} = y^2 + 1$, $y(2) = 1$

(d)
$$4xy \frac{dy}{dx} = y^2 + 1$$
, $y(2) = 1$

Differential Equations I Final Exam 25.12.2015

1.
$$x^2(x+1)\frac{d^2y}{dx} - x(2x+3)\frac{dy}{dx} + (2x+3)y = 0$$
 is given.

- (a) Find a particular solution in the form $y = x^n$ of the given differential equation. (05p)
- (b) By using (a) find general solution of the given differential equation. (20p)
- 2. Find the general solution of the Cauchy-Euler differential equation (25p)

$$x^{2} \frac{d^{2}y}{dx} + 2x \frac{dy}{dx} - 2y = 4x \ln x - 5\cos(\ln x)$$

3. Find the general solution of the differential equation by using variation of parameters. (20p)

$$\frac{d^2y}{dx} - y = 4$$

4. Find the general solution of the differential equation: $\frac{d^3y}{dx^3} - \left(\frac{d^2y}{dx^2}\right)^2 = 0$ (15p)

5. Find the general solution of the differential equation: $y \frac{d^2 y}{dx^2} = \left(\frac{dy}{dx}\right)^2 + y^2$, $\left(write \frac{dy}{dx} = uy\right)$

Duration 90 min.

GOOD LUCK!... Dr. Cemal ÇİÇEK

Differential Equations I Final Exam (Gece) 04.01.2016

1. $x(x^2+1)\frac{d^2y}{dx^2} + 2(x^2-x+1)\frac{dy}{dx} - 2y = 0$ is given.

- (a) Find a particular solution in the form $y = x^n$ of the given differential equation. (05p)
- (b) By using (a) find general solution of the given differential equation. (20p)
- 2. Find the general solution of the Cauchy-Euler differential equation (25p)

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 9x \ln x + 4\cos(\ln x)$$

3. Find the general solution of the differential equation by using variation of parameters. (20p)

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = -4$$

- **4.** Find the general solution of the differential equation: $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + 1 = 0$ (15p)
- **5.** Find the general solution of the differential equation: $y \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2 4y^2$, $\left(write \frac{dy}{dx} = uy\right)$

Duration 90 min.

GOOD LUCK!... Dr. Cemal ÇİÇEK

1. Find the general solution of the homogeneous differential equation

$$\frac{dy}{dx} = \frac{y}{2x} + \frac{y^2}{x^2}$$
 by using the substitution $y = ux$. (20p)

2. Find the general solution of the differential equation (20p)

$$\frac{dy}{dx} = \frac{x - y + 1}{y - x + 1}$$

3. (a) Is the differential equation

$$(2e^{y} - 3x\sin y)dx + (xe^{y} - x^{2}\cos y)dy = 0$$
 exact? (05p)

- **(b)** If not exact, find an integrating factor $\mu = \mu(x)$. **(10p)**
- (c) Find the solution of the given differential equation . (05p)
- 4. Find the general solution of the Bernoulli equation

$$\frac{dy}{dx} - \frac{y}{x} = y^2 x \sin x$$
 (20p)

5. Find the general and singular (if exist) solutions of the Clairaut equation

$$y = xp - \sqrt{p}$$
 , where $p = \frac{dy}{dx}$ (05p+05p)

- **6.** (a) Verify that the primitive $y=c_1+c_2e^{-x}$ contains two independent parameters. (05p)
 - (b) Find the second order differential equation of which this function is the general slution. (05p)

Differential Equations I Midterm Exam 19.11.2015

1. Find the general solution of the homogeneous differential equation

$$(y^2 - 2xy + 4x^2)dx - 2x^2dy = 0$$
 by using the substitution $y = ux$. (25p)

2. Find the general solution of the Bernoulli equation

$$\frac{dy}{dx} + \frac{2y}{x} = 2x^3y^2 \quad (25p)$$

3. (a) Is the differential equation

$$(3y^2 + 3y - 4xy)dx + (x + 2xy - x^2)dy = 0$$
 exact? (05p)

- **(b)** If not exact, find an integrating factor $\mu = \mu(x)$. **(10p)**
- (c) Find the solution of the given differential equation . (10p)
- 4. Find the general and singular(if exist) solutions of the Clairaut equation

$$y = xp - sinp$$
 , where $p = \frac{dy}{dx}$ (05p+05p)

- **5.** (a) Verify that the primitive $y = c_1 sin 2x + c_2 cos 2x$ contains two independent parameters. (10p)
 - (b) Find the second order differential equation of which this function is the general slution. (05p)

Duration 60 min.

GOOD LUCK!... Dr. Cemal ÇİÇEK

Diferansiyel Denklemler I Telafi Sınavı (Mat.-II.Öğretim) 10.02.2011

- **1.** $(y'')^2 (y')^2 = 1$ diferansiyel denkleminin genel çözümünü bulunuz. **(25p)**
- **2.** $x^2y'' 6y = 10x^3 375\left(\frac{\ln x}{x}\right)^2$ Euler denkleminin genel çözümünü bulunuz **(25p).**
- **3.** $y''' + 9y' = 18Co\sec(3x)$ denkleminin genel çözümünü bulunuz (25p).
- **4.** y' ay = f(x) denkleminin y(1) = 0 gerçekleyen çözümü $y(x) = -\int_{x}^{1} e^{a(x-t)} f(t) dt$ şeklindedir,

gösteriniz. $f\left(x\right)$, $\left[0,1\right]$ 'de sürekli bir fonksiyondur. (Denklemi gerçeklediğini göstermiyorsunuz)

Süre 90 dk BAŞARILAR....... Yrd. Doç. Dr. Cemal ÇİÇEK

GOOD LUCK!... Dr. Cemal ÇİÇEK