ANALYSİS I Homework 2

06.11.2015

- **1.** Let A be bounded above . Define $B=\{b\in\mathbb{R}:\ b\ is\ an\ upper\ bound\ for\ A\ \}.$ Show that supA=infB.
- **2.** Let A be a subset of \mathbb{R} and $\alpha \in \mathbb{R}$.
- a) $\alpha = SupA \iff (\alpha, +\infty) \cap A = \emptyset$ and for $\forall \epsilon > 0$, $(\alpha \epsilon, \alpha] \cap A \neq \emptyset$
- **b)** $\alpha = \inf A \iff (-\infty, \infty) \cap A = \emptyset \text{ and for } \forall \varepsilon > 0, \quad [\alpha, \alpha + \varepsilon) \cap A \neq \emptyset$
- **3.** Let a_n be a sequence of \mathbb{R} . Prove that: $a_n \to 0 \iff |a_n| \to 0$
- **4.** Let a_n be a sequence of \mathbb{R} with $a_n \geq 0$ for all $n \in \mathbb{N}$.

Prove that: If $a_n \to a \in \mathbb{R}$ then $\sqrt{a_n} \to \sqrt{a}$

5. Let $x, y \in \mathbb{R}$ with x < y. For $\varepsilon = \frac{y-x}{2}$,

Show that: Whether $B_{\mathcal{E}}(x) \cap B_{\mathcal{E}}(y) = \emptyset$ or $B_{\mathcal{E}}(x) \cap B_{\mathcal{E}}(y) \neq \emptyset$? Why?

- **6.** $\forall n \in \mathbb{N} \ a_n > 0$. If the sequence (a_n) is monotone, then show that the sequence $\left(\frac{1-a_n}{a_n}\right)$ is monotone.
- **7.** \forall $n\in\mathbb{N}$ $a_n>0$. If the sequence (a_n) is monotone, then show that the sequence $\left(\frac{1-a_n}{1+a_n}\right)$ is monotone.
- 8. Do the proof of the theorem that I didn't do in courses....