- 1. Find the volume generated when the plane regions bounded bye the given curves and lines are rotated about the x- axis.
 - (a) $y = \sin x$, y = 0, $0 \le x \le \pi$ (b) $y = x^2 + 1$, y = x + 3 (c) $y = x^3 + 1$, y = 0, x = 2

- (d) $x = 2y y^2$, x = 0 (e) $y = 3x x^2$, y = x (f) $y = x x^2$, y = 0 (g) $y = 4 x^2$, y = 2 x
- (h) $x = y y^3$, x = 0 (in the first quadrant) (i) $x = y y^3$, x = 1, y = 1 (in the first quadrant)
- (j) $y = x^3$, 4x = y (in the first quadrant) (k) $y = \sqrt{x}$, $y = \frac{x^2}{8}$ (in the first quadrant)
- (I) y = x(a-x), (a>0) y = 0 (m) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (n) $y = \sin^2 x, 0 \le x \le \pi$

- 2. Find the volume generated when the plane regions bounded by the given curves and lines are rotated about the y-axis.

 - (a) $y = \frac{x}{2}$, y = 2, x = 0 (b) $x = \sqrt{4 y^2}$, y = 0, x = 0 (c) xy = 1, y = 3, x = 0
 - (d) $y = \tan x$, $x = \frac{\pi}{3}$ (in the first quadrant) (e) $y = \sqrt{x}$, x = 0, y = 2

- (f) $y = x^4$, y = 0, x = 1 (g) $y = x^3$, y = 0, x = 2 (h) $y = 8x^2(1-x)$, $0 \le x \le 1$, y = 0
- (i) $y = 2x^2$, $y = x^2(x^2 2)$
- **3.** Find the volume of the the area bounded by the curve $y = x^2$, y = 4 when rotated as follows: about the (a) y - axis**(b)** x - axis(c) line y = 4 (d) line y = -1 (e) line x = 2
- **4.** Find the volume of the the area bounded by the curves and the lines:
 - (a) $y = x + x^2$, $y = x^2 1$, x = 0 rotated about the line y = 1
 - **(b)** $y = 4x x^2$, y = 0 rotated about the line y = 4
 - (c) $y=1-x^2$, y=-3 rotated about the line y=-3
 - (d) $y = x^3$, y = -1, x = 1 rotated about the line y = 2
 - (e) $2x = 4 y^2$, $2x = y^2 4$ rotated about the line x = -3
 - (f) $x = y^2$, $x = 2 y^2$ rotated about the line x = -1