1. $f:[1,2] \rightarrow \mathbb{R}$ is given by $f(x)=-x^{3}+3 \cos \left(\frac{\pi x}{2}\right)$. Is there at least one x_{0} in $(1,2)$ such that $f\left(x_{0}\right)=0$? Explain your answer. (II. Öğretim sorumlu)
2. (a) Find the tangent line and normal line of the curve $x^{3}+y^{3}-x y-7=0$ at the point $(1,2)$
(b) Find the tangent line and normal line of the curve $y=x^{3}+2 x^{2}-4 x-3$ at the point $(-2,5)$
(c) Find the tangent line and normal line of the curve $y=\sqrt[3]{x-1}$ at the point $(1,0)$
(d) Write the equations of the tangent lines and the normal lines to the curve $y=(x-1)(x-2)(x-3)$ at the points of its intersection with the x-axis.
3. Find the limits by using L'Hospital rule:
(a) $\operatorname{Lim}_{x \rightarrow 0}\left(1+x^{2}\right)^{1 /\left(x^{2}\right)}=$?
(b) $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{e^{x}}{x}-\frac{1}{\sin x}\right)=$?
(c) $\lim _{x \rightarrow \pi}(x-\pi) \tan \left(\frac{x}{2}\right)$
(d) $\lim _{x \rightarrow 0} \frac{\tan x}{\ln (x-1)}$
(e) $\lim _{x \rightarrow \pi} \frac{1+\operatorname{Cos}(x)}{(x-\pi)^{2}}$
(f) $\lim _{x \rightarrow 1} \frac{1-\sin \left(\frac{\pi}{2} x\right)}{1-x}=$?
(g) $\lim _{x \rightarrow \pi / 4} \frac{\sin x-\cos x}{\tan x-1}$
(h) $\lim _{x \rightarrow 0} \frac{1-\sqrt{\cos x}}{1-\cos \sqrt{x}}$
4. If $f(x)$ is defined on interval (a, b) and attains a minimum value at $x_{0} \in(a, b)$, and if $f^{\prime}\left(x_{0}\right)$ exists, then $f^{\prime}\left(x_{0}\right)=0$.
5. Do the following functions satisfy the conditions of the Rolle Theorem on the indicated closed intervals? If yes, find the all points x_{0} which figure in the Rolle Formula.
(a) $f(x)=(2 x-3)^{2}(4 x+1), \quad[0,2]$
(b) $\quad f(x)=\sqrt[3]{(x-2)^{2}}, \quad[0,4]$
(c) $f(x)=(2 x-3)^{2}(4 x+1), \quad[0,2]$
(d) $\quad f(x)=\tan x, \quad[0, \pi]$
(e) $f(x)=(2 x-3)^{2}(4 x+1), \quad[0,2]$
(f) $\quad f(x)=\tan x, \quad[0, \pi]$
6. Find the dervatives of the following functions by using derivatives table.
(a) $f(x)=\frac{\arctan \left(x e^{x}\right)}{1+e^{x}}$
(b) $f(x)=\frac{\arcsin x}{\arccos x}$
(c) $f(x)=\sqrt[3]{x \ln x+\cos x}$
(d) $f(x)=5^{x^{2} \tan x} \sin \left(x^{2}+\tan x\right)$
(e) $f(x)=\frac{15}{4(x-3)^{4}}+\frac{10}{3(x-3)^{3}}+\frac{1}{2(x-3)^{2}}$
7. (a) The function $f(x)=x(x+1)(x+2)(x+3)$ is given.

Show that the equation $f^{\prime}(x)=0$ has three real roots.
(b) $x=0$ obviously is a root of the equation $e^{x}-x-1=0$.

Show that this equation can not have any other real root.
(c) Show that the equation $x^{5}+2 x^{3}+5 x-10=0$ has one and only one real root on $[0,1]$.
(d) Show that the equation $x \arctan x-1=0$ has one and only one real root on $\left[1, \frac{3}{2}\right]$.
8. Prove the following inequalities.
(a) $\frac{x}{1+x^{2}}<\arctan x<x$ for $x>0$. (Hint. Take $f(x)=\arctan x$ on $[0, x]$)
(b) $1<\frac{x}{\sin x}<\frac{\pi}{2}$ for $0<x<\frac{\pi}{2}$. (Hint. Take $f(x)=\sin x$ on $\left.[0, x]\right)$
(c) $\frac{3}{25}+\frac{\pi}{4}<\arctan \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6} .\left(\right.$ Hint. Take $f(x)=\arctan x$ on $\left.\left[1, \frac{4}{3}\right]\right)$
8. Find the dervatives y^{\prime} of te following $y=y(x)$ functions at the indicated points.
(a) $(x+y)^{3}=27(x-y)$ at the point
(b) $y e^{y}=e^{x+1}$ at the point $(0,1)$
(c) $y^{2}=x+\ln \left(\frac{y}{x}\right)$ at the point $(1,1)$

