ANALYSIS II Homework 1

- **1.** $f: [1,2] \to \mathbb{R}$ is given by $f(x) = -x^3 + 3\cos\left(\frac{\pi x}{2}\right)$. Is there at least one x_0 in (1,2) such that $f(x_0) = 0$? Explain your answer. (II. Öğretim sorumlu)
- **2.** (a) Find the tangent line and normal line of the curve $x^3 + y^3 xy 7 = 0$ at the point (1, 2)
 - (**b**) Find the tangent line and normal line of the curve $y = x^3 + 2x^2 4x 3$ at the point (-2,5)
 - (c) Find the tangent line and normal line of the curve $y = \sqrt[3]{x-1}$ at the point (1,0)
 - (d) Write the equations of the tangent lines and the normal lines to the curve y = (x-1)(x-2)(x-3)at the points of its intersection with the x-axis.
- 3. Find the limits by using L'Hospital rule:
 - (a) $\lim_{x \to 0} (1+x^2)^{1/(x^2)} = ?$ (b) $\lim_{x \to 0} \left(\frac{e^x}{x} - \frac{1}{\sin x}\right) = ?$ (c) $\lim_{x \to \pi} (x-\pi) \tan\left(\frac{x}{2}\right)$ (d) $\lim_{x \to 0} \frac{\tan x}{\ln(x-1)}$ (e) $\lim_{x \to \pi} \frac{1+\cos(x)}{(x-\pi)^2}$ (f) $\lim_{x \to 1} \frac{1-\sin(\frac{\pi}{2}x)}{1-x} = ?$ (g) $\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\tan x - 1}$ (h) $\lim_{x \to 0} \frac{1-\sqrt{\cos x}}{1-\cos\sqrt{x}}$
- **4.** If f(x) is defined on interval (a,b) and attains a minimum value at $x_0 \in (a,b)$, and if $f'(x_0)$ exists, then $f'(x_0) = 0$.
- 5. Do the following functions satisfy the conditions of the Rolle Theorem on the indicated closed intervals? If yes, find the all points x_0 which figure in the Rolle Formula.
 - (a) $f(x) = (2x-3)^2 (4x+1)$, [0,2] (b) $f(x) = \sqrt[3]{(x-2)^2}$, [0,4](c) $f(x) = (2x-3)^2 (4x+1)$, [0,2] (d) $f(x) = \tan x$, $[0,\pi]$ (e) $f(x) = (2x-3)^2 (4x+1)$, [0,2] (f) $f(x) = \tan x$, $[0,\pi]$

6. Find the dervatives of the following functions by using derivatives table.

(a)
$$f(x) = \frac{\arctan(xe^x)}{1+e^x}$$
 (b) $f(x) = \frac{\arcsin x}{\arccos x}$
(c) $f(x) = \sqrt[3]{x \ln x + \cos x}$ (d) $f(x) = 5^{x^2 \tan x} \sin(x^2 + \tan x)$
(e) $f(x) = \frac{15}{4(x-3)^4} + \frac{10}{3(x-3)^3} + \frac{1}{2(x-3)^2}$

7. (a) The function f(x) = x(x+1)(x+2)(x+3) is given.

Show that the equation f'(x) = 0 has three real roots.

- (b) x = 0 obviously is a root of the equation $e^x x 1 = 0$. Show that this equation can not have any other real root.
- (c) Show that the equation $x^5 + 2x^3 + 5x 10 = 0$ has one and only one real root on [0,1].
- (d) Show that the equation $x \arctan x 1 = 0$ has one and only one real root on $\begin{bmatrix} 1, \frac{3}{2} \end{bmatrix}$.
- 8. Prove the following inequalities.

(a)
$$\frac{x}{1+x^2} < \arctan x < x$$
 for $x > 0$. (Hint. Take $f(x) = \arctan x$ on $[0, x]$)
(b) $1 < \frac{x}{\sin x} < \frac{\pi}{2}$ for $0 < x < \frac{\pi}{2}$. (Hint. Take $f(x) = \sin x$ on $[0, x]$)
(c) $\frac{3}{25} + \frac{\pi}{4} < \arctan \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. (Hint. Take $f(x) = \arctan x$ on $[1, \frac{4}{3}]$)

8. Find the dervatives y' of the following y = y(x) functions at the indicated points.

(a)
$$(x+y)^3 = 27(x-y)$$
 at the point (2,1)
(b) $ye^y = e^{x+1}$ at the point (0,1)
(c) $y^2 = x + \ln\left(\frac{y}{x}\right)$ at the point (1,1)

Yrd. Doç. Dr. Cemal ÇİÇEK