1. Let $f: A \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$. Prove that:

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a}|f(x)-L|=0
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $a \in \mathbb{R}$. Prove that:

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow 0} f(x+a)=L
$$

3. Let $f:(0, a) \rightarrow \mathbb{R}, f(x)=x^{2}$.
(a) For any points $x, b \in(0, a)$, show that: $\left|f(x)-b^{2}\right| \leq 2 a|x-b|$.
(b) Use inequality in (a) to prove that: $\lim _{x \rightarrow b} f(x)=b^{2}$ for any $b \in(0, a)$
4. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function and $c \in(a, b)$. Suppose there exist constants M and L such that $|f(x)-L| \leq M|x-c|$ for $x \in(a, b)$. Prove that: $\lim _{x \rightarrow c} f(x)=L$
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\lim _{x \rightarrow 0} f(x)=L$. For $a>0$,

Prove that: $\lim _{x \rightarrow 0} f(a x)=L$
6. Let $a \in \mathbb{R}$ and Let $f: \mathbb{R} \rightarrow \mathbb{R}$ such that .
(a) If $L=0$, than show that $\lim _{x \rightarrow a} f(x)=$ (
(b) Give an example that if $L \neq 0$ than f may not have limit at a point a.
7. Let $A \subseteq B \subseteq \mathbb{R}$, let $f: B \rightarrow \mathbb{R}$ and let g be the restriction of f to A (That means: $g(x)=f(x)$ for all $x \in A$) Then,
(a) If f is continuous at $a \in A$, then g is continuous at $a \in A$
(b) Give an example that if g is continuous at $a \in A$, it need not follow that f is continuous at $a \in A$
8. Let $a<b<c$, Suppose that f is continuous on $[a, b]$, that g is continuous on $[b, c]$. Define h on $[a, c]$ by $h(x)=\left\{\begin{array}{ll}f(x), & \text { if } x \in[a, b] \\ g(x), & \text { if } x \in[b, c]\end{array}\right.$. Prove that h is continuous on $[a, c]$.
9. Let $K>0$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the condition $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in \mathbb{R}$. Prove that f is continuous at every point $x_{0} \in \mathbb{R}$.
10. Let $f, g: A \rightarrow \mathbb{R}$ be functions and $a \in \mathbb{R}$. Suppose that $f(x) \leq g(x)$ for all $x \in A$.
(a) If $\lim _{x \rightarrow a} f(x)=+\infty$, then $\lim _{x \rightarrow a} g(x)=+\infty$
(b) If $\lim _{x \rightarrow a} g(x)=-\infty$, then $\lim _{x \rightarrow a} f(x)=-\infty$
11. Let $f: A \rightarrow \mathbb{R}$ be functions such that $\lim _{x \rightarrow 0} f(x)=L$. For $a>0$, Prove that: $\lim _{x \rightarrow 0} f(a x)=L$
12. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a function. Prove that :
$\lim _{x \rightarrow+\infty} f(x)=L \quad \Leftrightarrow \quad \lim _{x \rightarrow 0^{+}} f\left(\frac{1}{x}\right)=L$
13. Let $f:(a, \infty) \rightarrow \mathbb{R}$ be a function such that $\lim _{x \rightarrow+\infty} x f(x)=L \in \mathbb{R}$.

Prove that : $\quad \lim _{x \rightarrow+\infty} f(x)=0$
14. Suppose that $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}^{+}$and that $\lim _{x \rightarrow a} g(x)=+\infty$. Show that:
(a) $\lim _{x \rightarrow a} f(x) g(x)=+\infty$.
(b) If $L=0$, show by an example that may fail.

$$
\text { (i.e. if } L=0 \text {, then give an example that } \lim _{x \rightarrow a} f(x) g(x) \neq+\infty \text {.) }
$$

15. 2014-2015 Öğretim yılında Final ve Telafide çıkmış sorular.
16. $a_{n}=(-1)^{n}+\left(\frac{n+1}{n+3}\right) \sin \left(\frac{n \pi}{2}\right)$ is given. (a) Find all accumulation points of a_{n}
(b) Find $\lim _{n \rightarrow \infty} \inf \left(a_{n}\right)=$? and $\limsup _{n \rightarrow \infty}\left(a_{n}\right)=$?
17. Evaluate: $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\sqrt{x}-x^{2}}=$? $\lim _{x \rightarrow \pi} \frac{\pi-x}{\cos \left(\frac{x}{2}\right)}=$? (Don't use L'Hospital)
18. Show that $\lim _{x \rightarrow \sqrt{5}}\left(5-x^{2}\right)=0$ by using definition of limit.
19. $\forall n \in \mathbb{N} \quad 0<a_{n}<1$. If the sequence $\left(a_{n}\right)$ is monotone then show that the sequence $\left(\frac{a_{n}}{a_{n}-1}\right)$ is monotone.
20. Let $f(x)$ be an odd function. Determine whether $g(x)=f\left(\sqrt[5]{x^{3}-x}-\sqrt[3]{x-x^{3}}\right)$ is odd or not?
21. $f:[-1,2] \rightarrow \mathbb{R}$ is given by $f(x)=x^{4}-4 \sin \left(\frac{\pi x}{2}\right)$. Is there at least one x_{0} in $(-1,2)$ such that $f\left(x_{0}\right)=10 ?$ Explain your answer.
22. Evaluate: $\lim _{x \rightarrow 1} \frac{x^{2}-\sqrt{x}}{\sqrt{x}-1}=$? $\lim _{x \rightarrow \pi} \frac{\pi-x}{\sin x}=$? (Don't use L'Hospital)
23. Show that $\lim _{x \rightarrow 2} x^{2}-4=0$ by using definition of limit.
24. $\forall n \in \mathbb{N} \quad 0<a_{n}<1$. If the sequence $\left(a_{n}\right)$ is monotone then show that the sequence $\left(\frac{a_{n}}{1-a_{n}}\right)$ is monotone.
$10 f(x)=\left\{\begin{array}{cl}x^{2}-10, & |x| \leq 3 \\ x+4, & \text { is given. Is } f \text { continuous at } x= \pm 3 \text { ? If not, determine } \\ \text { the kind of discontinuity there. }\end{array}\right.$
25. Let $f(x)$ be an odd function. Determine whether $\cdot g(x)=f\left(\sqrt[8]{x^{3}-x}-\sqrt[8]{x-x^{3}}\right)$ is odd or not?
26. $a_{n}=\left(3-\frac{(-1)^{n}}{n}\right) \cos \left(\frac{n \pi}{2}\right)$ is given. (a) Find all accumulation points of a_{n}
(b) Find $\lim _{n \rightarrow \infty} \inf \left(a_{n}\right)=$? and $\limsup _{n \rightarrow \infty}\left(a_{n}\right)=$?
27. Evaluate: $(\boldsymbol{a}) \lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x^{2}-4}=$? (b) $\lim _{x \rightarrow 3} \frac{3-x}{\sin (\pi x)}=$? (Don't use L'Hospital)
28. Show that $\lim _{x \rightarrow 1}\left(1-x^{2}\right)=0$ by using definition of limit.
29. $\forall n \in \mathbb{N} a_{n}>0$. If the sequence (a_{n}) is monotone, then show that the sequence $\left(\frac{1-a_{n}}{1+a_{n}}\right)$ is monotone.
30. Determine whether the function $f(x)=\left\{\begin{aligned}-x^{6}, & \text { if } x \geq 0 \\ x^{6}, & \text { if } x<0\end{aligned}\right.$ is even, odd or neither.
