ANALYSIS I Homework 4

1. Let $f: A \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. Prove that:

 $\lim_{x \to a} f(x) = L \iff \lim_{x \to a} |f(x) - L| = 0$

- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. Prove that: $\lim_{x \to a} f(x) = L \iff \lim_{x \to 0} f(x+a) = L$
- **3.** Let $f:(0,a) \to \mathbb{R}$, $f(x) = x^2$.
 - (a) For any points $x, b \in (0, a)$, show that: $\left| f(x) b^2 \right| \le 2a |x b|$.
 - (**b**) Use inequality in (**a**) to prove that : $\lim_{x \to b} f(x) = b^2$ for any $b \in (0, a)$
- **4.** Let $f:(a,b) \to \mathbb{R}$ be a function and $c \in (a,b)$. Suppose there exist constants M and L such that $|f(x)-L| \le M |x-c|$ for $x \in (a,b)$. Prove that : $\lim_{x \to c} f(x) = L$
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x \to 0} f(x) = L$. For a > 0,

Prove that: $\lim_{x \to 0} f(ax) = L$

6. Let
$$a \in \mathbb{R}$$
 and Let $f : \mathbb{R} \to \mathbb{R}$ such that

- (a) If L=0, than show that $\lim_{x\to a} f(x) = 0$
- (b) Give an example that if $L \neq 0$ than f may not have limit at a point a.
- 7. Let $A \subseteq B \subseteq \mathbb{R}$, let $f: B \to \mathbb{R}$ and let g be the restriction of f to A (That means: g(x) = f(x) for all $x \in A$) Then,
 - (a) If f is continuous at $a \in A$, then g is continuous at $a \in A$
 - (b) Give an example that if g is continuous at $a \in A$, it need not follow that f is continuous at $a \in A$
- 8. Let a < b < c, Suppose that f is continuous on [a,b], that g is continuous on [b,c].

Define h on [a,c] by $h(x) = \begin{cases} f(x), & \text{if } x \in [a,b] \\ g(x), & \text{if } x \in [b,c] \end{cases}$.

Prove that h is continuous on [a, c].

- 9. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition $|f(x) f(y)| \le K |x y|$ for all $x, y \in \mathbb{R}$. Prove that f is continuous at every point $x_0 \in \mathbb{R}$.
- **10.** Let $f, g: A \to \mathbb{R}$ be functions and $a \in \mathbb{R}$. Suppose that $f(x) \le g(x)$ for all $x \in A$.
 - (a) If $\lim_{x \to a} f(x) = +\infty$, then $\lim_{x \to a} g(x) = +\infty$
 - **(b)** If $\lim_{x \to a} g(x) = -\infty$, then $\lim_{x \to a} f(x) = -\infty$

11. Let $f: A \to \mathbb{R}$ be functions such that $\lim_{x \to 0} f(x) = L$. For a > 0, Prove that : $\lim_{x \to 0} f(ax) = L$

12. Let $f:(0,\infty) \to \mathbb{R}$ be a function. Prove that :

$$\lim_{x \to +\infty} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to 0^+} f\left(\frac{1}{x}\right) = L$$

13. Let $f:(a,\infty) \to \mathbb{R}$ be a function such that $\lim_{x \to +\infty} xf(x) = L \in \mathbb{R}$.

Prove that : $\lim_{x \to +\infty} f(x) = 0$

14. Suppose that $\lim_{x \to a} f(x) = L \in \mathbb{R}^+$ and that $\lim_{x \to a} g(x) = +\infty$. Show that:

- (a) $\lim_{x \to a} f(x)g(x) = +\infty$.
- (b) If L = 0, show by an example that may fail.

(*i.e.* if
$$L = 0$$
, then give an example that $\lim_{x \to a} f(x)g(x) \neq +\infty$.)

15. 2014-2015 Öğretim yılında Final ve Telafide çıkmış sorular.

1. $a_n = (-1)^n + \left(\frac{n+1}{n+3}\right) Sin\left(\frac{n\pi}{2}\right)$ is given. (a) Find all accumulation points of a_n (b) Find $\liminf_{n \to \infty} (a_n) =?$ and $\limsup_{n \to \infty} (a_n) =?$

- 2. Evaluate: $\lim_{x \to 1} \frac{\sqrt{x} 1}{\sqrt{x} x^2} = ? \lim_{x \to \pi} \frac{\pi x}{\cos(\frac{x}{2})} = ?$ (Don't use L'Hospital)
- 3. Show that $\lim_{x \to \sqrt{5}} (5 x^2) = 0$ by using definition of limit.

4. $\forall n \in \mathbb{N} \quad 0 < a_n < 1$. If the sequence (a_n) is monotone then show that the sequence

$$\left(\frac{a_n}{a_n-1}\right)$$
 is monotone.

5. Let f(x) be an odd function. Determine whether $g(x) = f(\sqrt[5]{x^3 - x} - \sqrt[5]{x - x^3})$ is

odd or not?

- 6. $f: [-1,2] \to \mathbb{R}$ is given by $f(x) = x^4 4\sin\left(\frac{\pi x}{2}\right)$. Is there at least one x_0 in (-1,2) such that $f(x_0) = 10$? Explain your answer.
- 7. Evaluate: $\lim_{x \to 1} \frac{x^2 \sqrt{x}}{\sqrt{x-1}} = ? \lim_{x \to \pi} \frac{\pi x}{\sin x} = ?$ (Don't use L'Hospital)
- 8. Show that $\lim_{x\to 2} x^2 4 = 0$ by using definition of limit.
- 9. $\forall n \in \mathbb{N} \quad 0 < a_n < 1$. If the sequence (a_n) is monotone then show that the sequence

$$\left(\frac{a_n}{1-a_n}\right)$$
 is monotone.

- 10 $f(x) = \begin{cases} x^2 10, & |x| \le 3 \\ x + 4, & |x| > 3 \end{cases}$ is given. Is f continuous at $x = \pm 3$? If not, determine the function of the second s
- 11. Let f(x) be an odd function. Determine whether $g(x) = f(\sqrt[5]{x^3 x} \sqrt[5]{x x^3})$ is odd or not?
- 1. $a_n = \left(3 \frac{(-1)^n}{n}\right) \cos\left(\frac{n\pi}{2}\right)$ is given. (a) Find all accumulation points of a_n (b) Find $\lim_{n \to \infty} \inf(a_n) =?$ and $\limsup_{n \to \infty} (a_n) =?$ 2. Evaluate: (a) $\lim_{x \to 2} \frac{\sqrt{x+2}-2}{x^2-4} =?$ (b) $\lim_{x \to 3} \frac{3-x}{\sin(\pi x)} =?$ (Don't use L'Hospital)

14. Show that $\lim_{x\to 1} (1-x^2) = 0$ by using definition of limit. 15. $\forall n \in \mathbb{N} \ a_n > 0$. If the sequence (a_n) is monotone, then show that the sequence $\left(\frac{1-a_n}{1+a}\right)$ is monotone.

16. Determine whether the function $f(x) = \begin{cases} -x^6, & \text{if } x \ge 0 \\ x^6, & \text{if } x < 0 \end{cases}$ is even, odd or neither.