1. Prove the following by induction.
(a) $\forall n \in \mathbb{N} ; 1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}$
(b) $\forall n \in \mathbb{N} ; 1^{3}+3^{3}+5^{3}+\cdots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$
(c) $\forall n \in \mathbb{N}: 4^{n}-1$ is divisible by 3 .
(d) $\forall n \in \mathbb{N}: 12^{n-1}+10$ is divisible by 11 .
(e) $\forall n \in \mathbb{N}$ için $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
2. (a) Let A and B be two sets. Show that: $A \subseteq B \Leftrightarrow A \cap B=A$
(b) Let A and B be two sets. Show that: $A \subseteq B \Leftrightarrow A \cup B=B$
3. Find the solution sets of the following.
(a) $|x+4|+|x-3|=7$
(b) $|x+4|+|x-3|=7$
(c) $|x+4|-|x+3| \geq 2$
(d) $\frac{|x-3|+|x+3|}{|2-x|+1}=2$
(e) $|x+6|-|x-3| \leq 2+x$
(f) $|x-2|+|x-3| \geq 5-x$
4. $x, y, z \in \mathbb{R}$. Prove the followings:
(a) $\max \{x, y\}=\frac{x+y+|x-y|}{2}$
(b) $\min \{x, y\}=\frac{x+y-|x-y|}{2}$
(c) $\frac{|x+y|}{1+|x+y|} \leq \frac{|x|}{1+|x|}+\frac{|y|}{1+|y|}$
(d) $\min \{x, y, z\}=\min \{\min \{x, y\}, z\}$
5. Let x be a positive irratioal number. Show that \sqrt{x} is an irrational number.
6. Given $x \in \mathbb{Q}^{+}$and $\sqrt{y} \in \mathbb{R}-\mathbb{Q}$. Is $\sqrt{x+\sqrt{y}}$ an irratioal number or not?. Why?
7. Given $x \in \mathbb{Q}$ and $y \in \mathbb{R}-\mathbb{Q}$. Is $\sqrt[3]{x \cdot \sqrt[5]{y}}$ an irratioal number or not?. Why?
8. Given $x \in \mathbb{Q}$ and $y \in \mathbb{R}-\mathbb{Q}$. Is $\sqrt[5]{x^{3}+\sqrt[7]{y}}$ an irratioal number or not?. Why?
9. Given $x^{2} \in \mathbb{R}-\mathbb{Q}$. Is \sqrt{x} an irratioal number or not?. Why?
10. Let the A be bounded above. $(A \subseteq \mathbb{R})$
(a) For a fixed $x_{0} \in \mathbb{R}$, Show that the set $x_{0}+A=\left\{x_{0}+a: a \in A\right\}$ is bounded above.
(b) If $\operatorname{Sup} A=\propto$, then show that $\operatorname{Sup}\left(x_{0}+A\right)=x_{0}+\propto$.
(c) For a fixed $y_{0} \in \mathbb{R}$, Show that the set $A-y_{0}=\left\{a-y_{0}: a \in A\right\}$ is bounded above.
(d) If $\operatorname{Sup} A=\propto$, then show that $\operatorname{Sup}\left(A-y_{0}\right)=\propto-y_{0}$.
11. (a) For the set $A=[3,5] \subset \mathbb{R}$, show that $\sup A=5$, and $\inf A=3$
(b) For the set $A=[3,5) \subset \mathbb{R}$, show that $\sup A=5$, and $\inf A=3$
(c) For the set $A=\{ \} \forall n \in \mathbb{N} ; 1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n\left(4 n^{2}-1\right)}{3}$
12. (a) Let A be bounded below. Define: $-A=\{-a \in \mathbb{R}: a \in A\}$.

Show that the set $-A$ is bounded above.
(b) Let A be bounded above. Define: $-A=\{-a \in \mathbb{R}: a \in A\}$.

Show that the set $-A$ is bounded below.
(c) Define: $-A=\{-a \in \mathbb{R}: a \in A\}$.

Show that $\sup (-A)=-\inf A$ and $\inf (-A)=-\sup A$.
(d) The set $A=\left\{\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ is given. Is the set A bounded above and below? If so find $\inf A=$? and $\sup A=$?
(e) The set $A=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ is given. Is the set A bounded above and below? If so find $\inf A=$? and $\sup A=$?
13. Let A be bounded below. Define $B=\{b \in \mathbb{R}: b$ is a lower bound for $A\}$. Show that $\inf A=\sup B$.
14. Let $a, b \in \mathbb{R}$. Then $a \leq b$ if and only if for every $n \in \mathbb{N}$ we have $a-\frac{1}{n}<b$
15. Let A and B be nonemty subsets of \mathbb{R}.
(a) Prove that: if $A \subseteq B$, then $\inf B \leq \inf A \leq \sup A \leq \sup B$.
(b) Prove that: $\operatorname{Sup}(A \cup B)=\max \{\sup A, \sup B\}$
16. Let A and B be nonemty bonded subsets of \mathbb{R}.
(a) Is $A \cup B$ bounded or not? Why?
(b) Is $A \cap B$ bounded or not? Why?
(c) Is $A-B$ bounded or not? Why?
17. Show that; if $x, y \in \mathbb{R}$ with $x \neq y$, then there exist ε-neighborhoods $B_{\varepsilon}(x)$ of x and $\quad B_{\varepsilon}(y)$ of y such that $B_{\varepsilon}(x) \cap B_{\varepsilon}(y)=\varnothing$.
18. If a set $A \subseteq \mathbb{R}$ contains one of its upper bounds, show that this upper bound is the supremum of A.
19. Let A be a nonempty bounded set in \mathbb{R}.
(a) Let $k>0$, let $k A=\{k a: a \in A\}$.

Prove that: i) $\inf (k A)=k \inf A$ ii) $\sup (k A)=k \sup A$
(b) Let $k<0$, let $k A=\{k a: a \in A\}$.

Prove that: i) $\inf (k A)=k \sup A$ ii) $\sup (k A)=k \inf A$
(e) The set $A=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ is given. Is the set A bounded above and below?

If so find $\inf A=$? and $\sup A=$?
is given. Is the set A bounded above and below?
If so find $\inf A=$? and $\sup A=$?
(e) The set $A=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$ is given. Is the set A bounded above and below?

