1. Prove the following by induction.

(a)
$$\forall n \in \mathbb{N}; \ 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$$

(b)
$$\forall n \in \mathbb{N}; 1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1)$$

- (c) $\forall n \in \mathbb{N}$: $4^n 1$ is divisible by 3.
- (d) $\forall n \in \mathbb{N}: 12^{n-1} + 10$ is divisible by 11.
- (e) $\forall n \in \mathbb{N}$ için $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$

2. (a) Let *A* and *B* be two sets. Show that: $A \subseteq B \iff A \cap B = A$ (b) Let *A* and *B* be two sets. Show that: $A \subseteq B \iff A \cup B = B$

- **3.** Find the solution sets of the following.
 - (a) |x+4|+|x-3|=7 (b) |x+4|+|x-3|=7

(c)
$$|x+4| - |x+3| \ge 2$$

(d) $\frac{|x-3| + |x+3|}{|2-x| + 1|} = 2$
(e) $|x+6| - |x-3| \le 2 + x$
(f) $|x-2| + |x-3| \ge 5 - x$

4. $x, y, z \in \mathbb{R}$. Prove the followings:

(a)
$$\max\{x, y\} = \frac{x + y + |x - y|}{2}$$

(b) $\min\{x, y\} = \frac{x + y - |x - y|}{2}$
(c) $\frac{|x + y|}{1 + |x + y|} \le \frac{|x|}{1 + |x|} + \frac{|y|}{1 + |y|}$
(d) $\min\{x, y, z\} = \min\{\min\{x, y\}, z\}$

5. Let x be a positive irratioal number. Show that \sqrt{x} is an irrational number.

6. Given $x \in \mathbb{Q}^+$ and $\sqrt{y} \in \mathbb{R} - \mathbb{Q}$. Is $\sqrt{x + \sqrt{y}}$ an irratioal number or not?. Why? 7. Given $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$. Is $\sqrt[3]{x \cdot \sqrt[5]{y}}$ an irratioal number or not?. Why? 8. Given $x \in \mathbb{Q}$ and $y \in \mathbb{R} - \mathbb{Q}$. Is $\sqrt[5]{x^3 + \sqrt[7]{y}}$ an irratioal number or not?. Why? 9. Given $x^2 \in \mathbb{R} - \mathbb{Q}$. Is \sqrt{x} an irratioal number or not?. Why?

10. Let the A be bounded above. $(A \subseteq \mathbb{R})$

- (a) For a fixed $x_0 \in \mathbb{R}$, Show that the set $x_0 + A = \{x_0 + a : a \in A\}$ is bounded above.
- (b) If $SupA = \infty$, then show that $Sup(x_0 + A) = x_0 + \infty$.
- (c) For a fixed $y_0 \in \mathbb{R}$, Show that the set $A y_0 = \{a y_0 : a \in A\}$ is bounded above.
- (d) If $SupA = \infty$, then show that $Sup(A y_0) = \infty y_0$.
- 11. (a) For the set $A = [3,5] \subset \mathbb{R}$, show that supA = 5, and infA = 3
 - (b) For the set $A = [3,5] \subset \mathbb{R}$, show that supA = 5, and infA = 3

(c) For the set $A = \{ \} \forall n \in \mathbb{N}; 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$

12. (a) Let A be bounded below. Define: $-A = \{-a \in \mathbb{R} : a \in A\}$.

Show that the set -A is bounded above.

(b) Let A be bounded above. Define: $-A = \{-a \in \mathbb{R} : a \in A\}$.

Show that the set -A is bounded below.

(c) Define: $-A = \{-a \in \mathbb{R} : a \in A\}$.

Show that sup(-A) = -infA and inf(-A) = -supA.

(d) The set $A = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$ is given. Is the set A bounded above and below?

If so find inf A = ? and $\sup A = ?$

(e) The set $A = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$ is given. Is the set A bounded above and below?

If so find $\inf A = ?$ and $\sup A = ?$

13. Let A be bounded below. Define $B = \{b \in \mathbb{R} : b \text{ is a lower bound for } A\}$. Show that infA = supB.

- 14. Let $a, b \in \mathbb{R}$. Then $a \leq b$ if and only if for every $n \in \mathbb{N}$ we have $a \frac{1}{n} < b$
- 15. Let A and B be nonemty subsets of R.
 (a) Prove that : if A ⊆ B, then inf B ≤ inf A ≤ sup A ≤ sup B.
 (b) Prove that : Sup(A ∪ B) = max{sup A, sup B}
- 16. Let A and B be nonemty bonded subsets of R.
 (a) Is A ∪ B bounded or not? Why?
 (b) Is A ∩ B bounded or not? Why?
 (c) Is A − B bounded or not? Why?
- 17. Show that; if $x, y \in \mathbb{R}$ with $x \neq y$, then there exist ε neighborhoods $B_{\varepsilon}(x)$ of x and $B_{\varepsilon}(y)$ of y such that $B_{\varepsilon}(x) \cap B_{\varepsilon}(y) = \emptyset$.
- 18. If a set $A \subseteq \mathbb{R}$ contains one of its upper bounds, show that this upper bound is the supremum of A.
- **19.** Let A be a nonempty bounded set in \mathbb{R} .

(a) Let k > 0, let $kA = \{ka : a \in A\}$.

Prove that: i) $\inf(kA) = k \inf A$ ii) $\sup(kA) = k \sup A$

(**b**) Let k < 0, let $kA = \{ka : a \in A\}$.

Prove that: i) $\inf (kA) = k \sup A$ ii) $\sup (kA) = k \inf A$

(e) The set $A = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$ is given. Is the set A bounded above and below?

If so find $\inf A = ?$ and $\sup A = ?$

is given. Is the set A bounded above and below?

If so find $\inf A = ?$ and $\sup A = ?$

(e) The set
$$A = \left\{ 1 - \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$
 is given. Is the set A bounded above and below?

If so find $\inf A = ?$ and $\sup A = ?$