1)
$$|\psi\rangle = \frac{1}{6} [|0\rangle + 0|1\rangle + 4|2\rangle]$$
 durumunda bir sistem ele alalım;

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & i \\ 0 & -i & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}$$
operatörleri $| 0 \rangle, | 1 \rangle, | 2 \rangle$ bazında verilmiş olsun.

a) Let's carry out an experiment which measured A and B respectively. What is the probability 0 for A and 1 for B respectively.

b) Let's carry out an experiment which measured B and A respectively. What is the probability 0 for A and 1 for B respectively.

c) compare the results of a) and b).

d) Are {A}, { B} and {A, B} a complete set of commuting observable?

- 2) Let us consider a physical system, the Hilbert space of which can be defined by the span of three orthogonal states: $|u_1 >$, $|u_2 >$ and $|u_3 >$. In the basis defined by these states (in the same order) we define two operators:
- a) Can *H*, *B*, represent observable quantities? b) Show that *H* and *B* commute. What is the most general form of the matrix that is commutable with *H*. c) Find a basis of simultaneous signature for *H* and *B*. $H=\hbar\omega\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad B=b\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

c) Find a basis of simultaneous eigenstates for *H* and *B*.

d) Are {*H*, *B*} a complete set of commuting operators? What about { H^2 , *B*}

3) Suppose
$$\psi(x,0) = \frac{A}{x^2 + a^2}$$
 $(-\infty < x < \infty)$ where A and a are constants.

- (a) Determine A, by normalizing $\Psi(x, 0)$.
- (b) Find $\langle x \rangle$, $\langle x^2 \rangle$, and σ_x (at time t = 0).
- (c) Find the momentum space wave function $\Phi(p, 0)$, and check that it is normalized.
- (d) Use $\Phi(p, 0)$ to calculate $\langle p \rangle$, $\langle p^2 \rangle$, and σ_p (at time t = 0).
- (e) Check the Heisenberg uncertainty principle for this state.

4) The particle mass of m in the infinite quantum well (0 < x < a). The initial state of the system is given by

$$\psi(x) = \frac{1}{\sqrt{10a}} \sin(\frac{\pi x}{a}) + A \sqrt{\frac{2}{a}} \sin(\frac{2\pi x}{a}) + \frac{3}{\sqrt{5a}} \sin(\frac{3\pi x}{a})$$

- a) Find A for normalized function.
- b) What is the Energies and its probabilities.
- c) Energy measured as $2\pi\hbar^2/ma^2$, what is the system state after this measurement.
- d) Find $\langle x \rangle$, $\langle p_x \rangle$, $\langle X^2 \rangle$, $\langle (p_x)^2 \rangle$. Show that Heisenberg uncertainty principle
- $(\triangle p_x \triangle x)$ by calculating $\triangle p_x$ and $\triangle x$.

5) Consider a three-dimensional vector space spanned by an orthonormal basis |1 > , |2 > , |3 > . Kets $|\alpha >$ and $|\beta >$ are given by;

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle.$$

- (a) Construct $\langle \alpha |$ and $\langle \beta |$ (in terms of the dual basis $\langle 1 |, \langle 2 |, \langle 3 | \rangle$).
- (b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$, and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- (c) Find all nine matrix elements of the operator $\hat{A} \equiv |\alpha\rangle\langle\beta|$, in this basis, and construct the matrix **A**. Is it hermitian?

6) The Hamiltonian for a certain two-level system is

$$\hat{H} = \epsilon \left(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1| \right),$$

where $|1\rangle$, $|2\rangle$ is an orthonormal basis and ϵ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and $|2\rangle$). What is the matrix **H** representing \hat{H} with respect to this basis?

7)

(a) Show that the sum of two hermitian operators is hermitian.

- (b) Suppose \hat{Q} is hermitian, and α is a complex number. Under what condition (on α) is $\alpha \hat{Q}$ hermitian?
- (c) When is the *product* of two hermitian operators hermitian?
- (d) Show that the position operator $(\hat{x} = x)$ and the hamiltonian operator $(\hat{H} = -(\hbar^2/2m)d^2/dx^2 + V(x))$ are hermitian.

8)

An operator A, corresponding to an observable α , has two normalised eigenfunctions ϕ_1 and ϕ_2 , with eigenvalues a_1 and a_2 . An operator B, corresponding to an observable β , has normalised eigenfunctions χ_1 and χ_2 , with eigenvalues b_1 and b_2 . The eigenfunctions are related by

$$\phi_1 = (2\chi_1 + 3\chi_2)/\sqrt{13}, \quad \phi_2 = (3\chi_1 - 2\chi_2)/\sqrt{13}.$$

 α is measured and the value a_1 is obtained. If β is then measured and then α again, show that the probability of obtaining a_1 a second time is 97/169.