1) $\quad|\psi\rangle=\frac{1}{6}[|0\rangle+0|1\rangle+4|2\rangle] \quad$ durumunda bir sistem ele alalım;
$H=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & \mathrm{i} \\ 0 & -\mathrm{i} & 1\end{array}\right] B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0\end{array}\right] \quad$ operatörleri $|0\rangle,|l\rangle,|2\rangle \quad$ bazında verilmiş olsun.
a) Let's carry out an experiment which measured A and B respectively. What is the probability 0 for A and 1 for B respectively.
b) Let's carry out an experiment which measured B and A respectively. What is the probability 0 for A and 1 for B respectively.
c) compare the results of a) and b).
d) Are $\{A\},\{B\}$ and $\{A, B\}$ a complete set of commuting observable?
2) Let us consider a physical system, the Hilbert space of which can be defined by the span of three orthogonal states: $\left|u_{1}\right\rangle,\left|u_{2}\right\rangle$ and $\left|u_{3}\right\rangle$. In the basis defined by these states (in the same order) we define two operators:
a) Can H, B, represent observable quantities?
b) Show that H and B commute. What is the most general form of the matrix that is

$B=b\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
commutable with H .
c) Find a basis of simultaneous eigenstates for H and B.
d) Are $\{H, B\}$ a complete set of commuting operators? What about $\left\{H^{2}, B\right\}$
3) Suppose

$$
\psi(\mathrm{x}, 0)=\frac{\mathrm{A}}{\mathrm{x}^{2}+\mathrm{a}^{2}} \quad(-\infty<\mathrm{x}<\infty)
$$

where A and a are constants.
(a) Determine A, by normalizing $\Psi(x, 0)$.
(b) Find $\langle x\rangle,\left\langle x^{2}\right\rangle$, and σ_{x} (at time $t=0$).
(c) Find the momentum space wave function $\Phi(p .0)$, and check that it is normalized.
(d) Use $\Phi(p, 0)$ to calculate $\langle p\rangle,\left\langle p^{2}\right\rangle$, and σ_{p} (at time $t=0$).
(e) Check the Heisenberg uncertainty principle for this state.
4) The particle mass of m in the infinite quantum well ($0<x<a$). The initial state of the system is given by

$$
\psi(x)=\frac{1}{\sqrt{10 a}} \sin \left(\frac{\pi x}{a}\right)+A \sqrt{\frac{2}{a}} \sin \left(\frac{2 \pi x}{a}\right)+\frac{3}{\sqrt{5 a}} \sin \left(\frac{3 \pi x}{a}\right)
$$

a) Find A for normalized function.
b) What is the Energies and its probabilities.
c) Energy measured as $2 \pi \hbar^{2} / m a^{2}$, what is the system state after this measurement.
d) Find $\langle x\rangle,\left\langle p_{x}\right\rangle,\left\langle X^{2}\right\rangle,\left\langle\left(p_{x}\right)^{2}\right\rangle$. Show that Heisenberg uncertainty principle $\left(\triangle p_{x} \triangle x\right)$ by calculating $\triangle p_{x}$ and $\triangle x$.
5) Consider a three-dimensional vector space spanned by an orthonormal basis $|1>| 2>$,, $\mid 3>$. Kets $\mid \alpha>$ and $\mid \beta>$ are given by;

$$
|\alpha\rangle=i|1\rangle-2|2\rangle-i|3\rangle, \quad|\beta\rangle=i|1\rangle+2|3\rangle
$$

(a) Construct $\langle\alpha|$ and $\langle\beta|$ (in terms of the dual basis $\langle 1|,\langle 2|,\langle 3|)$.
(b) Find $\langle\alpha \mid \beta\rangle$ and $\langle\beta \mid \alpha\rangle$, and confirm that $\langle\beta \mid \alpha\rangle=\langle\alpha \mid \beta\rangle^{*}$.
(c) Find all nine matrix elements of the operator $\hat{A} \equiv|\alpha\rangle\langle\beta|$, in this basis, and construct the matrix \mathbf{A}. Is it hermitian?
6) The Hamiltonian for a certain two-level system is

$$
\hat{H}=\epsilon(|1\rangle\langle 1|-|2\rangle\langle 2|+|1\rangle\langle 2|+|2\rangle\langle 1|)
$$

where $|1\rangle,|2\rangle$ is an orthonormal basis and ϵ is a number with the dimensions of energy. Find its eigenvalues and eigenvectors (as linear combinations of $|1\rangle$ and |2)). What is the matrix \mathbf{H} representing \hat{H} with respect to this basis?
7)
(a) Show that the sum of two hermitian operators is hermitian.
(b) Suppose \hat{Q} is hermitian, and α is a complex number. Under what condition (on α) is $\alpha \hat{Q}$ hermitian?
(c) When is the product of two hermitian operators hermitian?
(d) Show that the position operator $(\hat{x}=x)$ and the hamiltonian operator $(\hat{H}=$ $\left.-\left(\hbar^{2} / 2 m\right) d^{2} / d x^{2}+V(x)\right)$ are hermitian.
8)

An operator A, corresponding to an observable α, has two normalised eigenfunctions ϕ_{1} and ϕ_{2}, with eigenvalues a_{1} and a_{2}. An operator B, corresponding to an observable β, has normalised eigenfunctions χ_{1} and χ_{2}, with eigenvalues b_{1} and b_{2}. The eigenfunctions are related by

$$
\phi_{1}=\left(2 \chi_{1}+3 \chi_{2}\right) / \sqrt{ } 13, \quad \phi_{2}=\left(3 \chi_{1}-2 \chi_{2}\right) / \sqrt{ } 13 .
$$

α is measured and the value a_{1} is obtained. If β is then measured and then α again, show that the probability of obtaining a_{1} a second time is 97/169.

