1) Solve the system of linear equations
$y+x=0$
a) $2 x+y=0$

Consider the given system of equations as represented below.

$$
\begin{array}{r}
y+x=0 \\
2 x+y=0 \tag{2}
\end{array}
$$

Now subtracting equation (1) from equation (2) we get as follows.

$$
\begin{gather*}
(2 x+y=0)-(y+x=0) \\
\Rightarrow(2 x+y-y-x)=(0-0) \\
\Rightarrow x+0 y=0 \\
\Rightarrow x=0 \tag{3}
\end{gather*}
$$

Now substituting (3) in equation (1) and solving for y as represented below.

$$
\begin{aligned}
y+x & =0 \\
\Rightarrow y+(0) & =0 \\
\Rightarrow y & =0
\end{aligned}
$$

The solution of the given system of equations is $x=0, y=0$
$x+y=-1$
b) $3 x+2 y=0$

Consider the given system of equations as represented below.

$$
\begin{align*}
x+y & =-1 \tag{1}\\
3 x+2 y & =0 \tag{2}
\end{align*}
$$

Now now multiplying equation (1) with 2 and subtracting it from equation (2) we get as follows.

$$
\begin{gather*}
(3 x+2 y=0)-2 \times(x+y=-1) \\
\Rightarrow(3 x-2 x)+(2 y-2 y)=(0+2) \\
\Rightarrow x+0 y=2 \\
\Rightarrow x=2 \tag{3}
\end{gather*}
$$

Now substituting (3) in equation (1) and solving for y as represented below.

$$
\begin{aligned}
x+y & =-1 \\
\Rightarrow(2)+y & =-1 \\
\Rightarrow y & =-1-2 \\
\Rightarrow y & =-3
\end{aligned}
$$

The solution of the given system of equations is $x=2, y=-3$
2) Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination.

$$
\begin{aligned}
x_{1}-3 x_{3}= & -2 \\
3 x_{1}+x_{2}-2 x_{3}= & 5 \\
2 x_{1}+2 x_{2}+x_{3}= & 4
\end{aligned}
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
3 & 1 & -2 & 5 \\
2 & 2 & 1 & 4
\end{array}\right]} \\
-3 R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
0 & 1 & 7 & 11 \\
2 & 2 & 1 & 4
\end{array}\right] \\
-2 R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
0 & 1 & 7 & 11 \\
0 & 2 & 7 & 8
\end{array}\right] \\
-\frac{1}{7} R_{3} \rightarrow R_{3}\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
0 & 1 & 7 & 11 \\
0 & 0 & -7 & -14
\end{array}\right] \\
-7 R_{3}+R_{2} \rightarrow R_{2}\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
0 & 1 & 7 & 11 \\
0 & 0 & 1 & 2
\end{array}\right] \\
\\
3 R_{3}+R_{1} \rightarrow R_{1}\left[\begin{array}{cccc}
1 & 0 & -3 & -2 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{array}\left[\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 2
\end{array}\right]\right]
$$

The associated equivalent system is:

$$
\begin{array}{r}
x_{1}=4 \\
x_{2}=-3 \\
x_{3}=2
\end{array}
$$

$x_{1}=4 \quad x_{2}=-3 \quad x_{3}=2$

$$
A=\left[\begin{array}{rrr}
3 & 2 & -1 \\
2 & 4 & 5 \\
0 & 1 & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 2 & 1 \\
5 & 4 & 2 \\
2 & 1 & 0
\end{array}\right]
$$

3) Find $2 A-B$
$2 A-B=2 A+(-B)$
$\left[\begin{array}{ccc}6-0 & 4-2 & -2-1 \\ 4-5 & 8-4 & 10-2 \\ 0-2 & 2-1 & 4-0\end{array}\right]=$
$\left[\begin{array}{ccc}6 & 2 & -3 \\ -1 & 4 & 8 \\ -2 & 1 & 4\end{array}\right]$
4) Find AB

$$
A=\left[\begin{array}{rr}
2 & -2 \\
-1 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
4 & 1 \\
2 & -2
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{rrr}
3 & 2 & 1 \\
-3 & 0 & 4 \\
4 & -2 & -4
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 2 \\
2 & -1 \\
1 & -2
\end{array}\right]
$$

(a) $A B=$

$$
A \cdot B=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-3 & 0 & 4 \\
4 & -2 & 4
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 2 \\
2 & -1 \\
1 & -2
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
3+4+1 & 6-2-2 \\
-3+0+4 & -6+0-8 \\
4-4-4 & 8+2+8
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
8 & 2 \\
1 & -14 \\
-4 & 18
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\dddot{(2)(4)}+(-2)(2) & (2)(1)+(-2)(-2) \\
(-1)(4)+(4)(2) & (-1)(1)+(4)(-2)
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
-8+-4 & 2+4 \\
-4+8 & -1+-8
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
4 & 6 \\
4 & -9
\end{array}\right]}
\end{aligned}
$$

5) Find the A.

$$
(2 A)^{-1}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Inverse of 2×2 matrix formula Suppose we are given some 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then, its inverse is given with following formula:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right],
$$

where $\underbrace{\operatorname{det} A=a d-b c}_{\text {determinant of } A}$.
$\left(c A^{-1}\right)^{-1}=c A$
This holds for any c.

$$
\begin{aligned}
& {\left[(2 A)^{-1}\right]^{-1} }=\frac{1}{[1 \cdot 4-2 \cdot 3]}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
&=\frac{1}{-2} \cdot\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
& \Rightarrow \\
& A=-\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
&=\left[\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right]
\end{aligned}
$$

Simply use formula from above and follow the calculations.

$$
A=\left[\begin{array}{cc}
-4 & 2 \\
3 & -1
\end{array}\right]
$$

6) $\left|\begin{array}{rrr}1 & 7 & -3 \\ 1 & 3 & 1 \\ 4 & 8 & 1\end{array}\right|$ Use elementary row or column operations to find the determinant.,

Using Theorem 3.3, modify given matrix to obtain triangular matrix.
$\left|\begin{array}{ccc}1 & 7 & -3 \\ 1 & 3 & 1 \\ 4 & 8 & 1\end{array}\right|$, add -1 times first row to second and add -4 times first row $\begin{array}{ll}4 & 8 \\ \text { to third }\end{array}$
$\sim\left|\begin{array}{ccc}1 & 7 & -3 \\ 0 & -4 & 4 \\ 0 & -20 & 13\end{array}\right|$, add -5 times second row to thrid
$\sim\left|\begin{array}{ccc}1 & 7 & -3 \\ 0 & -4 & 4 \\ 0 & 0 & -7\end{array}\right|$
Matrix is triangular meaning that its determinant can be evaluated as product of diagonal elements.
$\operatorname{det}=1 \cdot(-4) \cdot(-7)=28$

7)

Show that $|A|=\left|A^{T}\right|$ for the matrix below

To find the determinant of A, expand by cofactors in the second row to obtain

$$
\begin{aligned}
|A| & =2(-1)^{3}\left|\begin{array}{rr}
1 & -2 \\
-1 & 5
\end{array}\right| \\
& =(2)(-1)(3) \\
& =-6 .
\end{aligned}
$$

To find the determinant of
$A^{T}=\left[\begin{array}{rrr}3 & 2 & -4 \\ 1 & 0 & -1 \\ -2 & 0 & 5\end{array}\right]$
expand by cofactors in the second column to obtain

$$
\begin{aligned}
\left|A^{T}\right| & =2(-1)^{3}\left|\begin{array}{rr}
1 & -1 \\
-2 & 5
\end{array}\right| \\
& =(2)(-1)(3) \\
& =-6 .
\end{aligned}
$$

8) Use a determinant of the coefficient matrix to determine whether the system of linear equations has a unique solution

$$
\begin{array}{r}
x_{1}-3 x_{2}=2 \\
2 x_{1}+x_{2}=1
\end{array}
$$

Coefficient matrix is,
$A=\left[\begin{array}{cc}1 & -3 \\ 2 & 1\end{array}\right]$
Now $|A|=1 \times 1+3 \times 2=7 \neq 0$
Hence given system of linear equations has unique solutions.

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=4 \\
2 x_{1}-x_{2}+x_{3}=6 \\
3 x_{1}-2 x_{2}+2 x_{3}=0
\end{array}
$$

The coefficient matrix corresponding to the given system of linear equation is

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -1 & 1 \\
3 & -2 & 2
\end{array}\right]
$$

By elementary column transformation we have :

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -1 & 1 \\
3 & -2 & 2
\end{array}\right]} \\
\mid C_{2}+C_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 0 \\
2 & -1 & 0 \\
3 & -2 & 0
\end{array}\right], ~ ?
$$

Since the third column of the matrix is zero, by evaluating determinant of A w.r.t the third column gives $|A|=0$.

Thus, $\operatorname{det}(A)=|A|=\left|\begin{array}{lll}1 & -1 & 1 \\ 2 & -1 & 1 \\ 3 & -2 & 2\end{array}\right|=0$.
Hence the given system of linear equation doesnot have unique solution.

The coefficient matrix corresponding to the given system of linear equation

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -1 & 1 \\
3 & -2 & 2
\end{array}\right]
$$

is singular, hence the system of linear equation doesnot have unique solution.

