1) In a double-slit experiment with electrons, the detector is located along a vertical screen parallel to the y-axis as in the figure. The amplitude of the electrons detected on the screen is given by

$$\psi_{I}(y,t) = A_{I}e^{-i(kx-wt)}/\sqrt{1+y^{2}}$$

when only the first slit is open and given by

$$\psi_2(y,t) = A_2 e^{-i(kx-wt+\pi y)} / \sqrt{1+y^2}$$

when only the second slit is open.

Find the intensity of the electrons;

- a) When they both slots are open and with presence of light source
- b) When both slots are open without light source.
- c) Draw the intensity of electron on the screen as a function of y for (a) and (b) condition.
- 2) In the double-slit experiment shown in the figure, the plate with the slits is moved vertically. The momentum transmitted from the photons to the plate can be measured. Suppose a photon hits the M point. Find the uncertainty of the F1 and F2 $\triangle X$.
- 3) a) $|0\rangle$ is unique.
 - **b)** $0 \mid V \rangle = \mid 0 \rangle$
 - c) $|-V\rangle = |V\rangle$

Verify these claims given above by considering;

 $|0\rangle+|0'\rangle$ and use the advertised properties of the two null vectors in turn,

$$|0\rangle = (0+1)|V\rangle + |-V\rangle$$
 and

$$|V\rangle + |-V\rangle = 0 |V\rangle = |0\rangle.$$

4) a) Find the eigenvalues and normalized eigenvectors of the matrix

$$\Omega = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 4 \end{bmatrix}$$

- b) Is the matrix Hermitian? Are the eigenvectors orthogonal?
- 5) Home work

Exercise 1.6.6. Verify that the following matrices are unitary:

$$\frac{1}{2^{1/2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}, \qquad \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$$

Verify that the determinant is of the form $e^{i\theta}$ in each case. Are any of the above matrices Hermitian?

6) Home work

Exercise 1.8.3.* Consider the Hermitian matrix

$$\Omega = \frac{1}{2} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

- (1) Show that $\omega_1 = \omega_2 = 1$; $\omega_3 = 2$.
- (2) Show that $|\omega = 2\rangle$ is any vector of the form

$$\frac{1}{(2a^2)^{1/2}} \begin{bmatrix} 0 \\ a \\ -a \end{bmatrix}$$

(3) Show that the $\omega = 1$ eigenspace contains all vectors of the form

$$\frac{1}{(b^2+2c^2)^{1/2}} \begin{bmatrix} b \\ c \\ c \end{bmatrix}$$

either by feeding $\omega = 1$ into the equations or by requiring that the $\omega = 1$ eigenspace be orthogonal to $|\omega = 2\rangle$.