
Special Theory of Relativity

LECTURE 2



Special Relativity

• The theory of special relativity assumes that the velocity of light c is 
a universal speed limit.

• There is no universal clock in spacetime. Which means that time is 
relative and not absolute. 

• Time is a fourth dimension in addition to the three spatial dimensions 
that we move around in.

• The implications of special relativity are that moving clocks slow 
down and that moving objects shrink in the direction of motion. 



Observed Length of an Object: Observed 

length of an object at rest and at different speeds

Length Contraction



Two events that 
occur at different 

times for one 
person can be 

simultaneous for a 
second person in 
motion relative to 

the first.





• Special relativity requires an understanding of Lorentz 
transformations, time dilation, and Fitzgerald-Lorentz 
contraction.

• The Minkowski diagram provides a geometric interpretation 
of events in spacetime. 

• A sample diagram shows how two inertial frames in relative 
motion exhibit time dilations and contractions in both 
directions. 

• Different frames of reference are in complete agreement 
about relative velocity, events in spacetime, and the laws of 
physics.



Galilean transformation of coordinate

• Consider two coordinate systems S and 
S moving relative to each other in the 
x-direction. 

• Specifically, coordinate system  S is 
moving to the right in the direction of 
the positive x-axis at constant velocity 
𝑣S/S relative to S.

• Alternatively, coordinate system S is 
moving to the left at constant velocity 
𝑣S/S relative to S so that 𝑣S/S = −𝑣S/S. 

S S’



• Relative motion occurs only along the x-axis; y and z coordinates 
coincide in S and S’. 

• Initial conditions at t = 0 are x = x= 0.

• 𝑣S/S is calculated by setting 𝑥= 0 (the location of the origin of S’) :



• The Galilean coordinate transformations are:

Velocities are additive:
Acceleration is an invariant :

𝑎𝑥
′ = 𝑎𝑥

S S’





Einstein’s Postulates

• At the turn of the twentieth century, the Michelson-Morley 
experiment had laid to rest the idea of finding a preferred inertial 
system for Maxwell’s equations.

• Because the Galilean transformation, which worked for the laws of 
mechanics, was invalid for Maxwell’s equations.

• Einstein started to think to form of Maxwell’s equations in moving 
inertial systems, and in 1905, he published his startling proposal
about the principle of relativity.

• He believed that Maxwell’s equations must be valid in all inertial 
frames. 



• Einstein was able to bring together seemingly inconsistent results 
concerning the laws of mechanics and electromagnetism with two 
postulates :



• The first postulate indicates that the laws of physics are the 
same in all coordinate systems moving with uniform relative 
motion to each other. 

• Einstein showed that postulate 2 actually follows from the 
first one.

• Although Newton’s principle referred only to the laws of 
mechanics, Einstein expanded it to include all laws of 
physics—including those of electromagnetism.

• We can now modify our previous definition of inertial frames
of reference to be those frames of reference in which all the
laws of physics are valid.



• Einstein’s solution requires us to take a careful look at time.

The problem of simultaneity. 

Flashbulbs positioned in system K at one 
meter on either side of Frank go off 
simultaneously in (a).
Frank indeed sees both flashes 
simultaneously in (b). 

However, Mary, at rest in system K’moving to 
the right with speed 𝑣, does not see the 
flashes simultaneously despite the fact that 
she was alongside Frank when the flashbulbs 
went off. 

During the finite time it took light to travel the 
one meter, Mary has moved slightly, as shown 
in exaggerated form in (b).



Einstein’s Postulates

• We must be careful when comparing the same event in two systems 
moving with respect to one another. 

• Time comparison can be accomplished by sending light signals from 
one observer to another, but this information can travel only as fast 
as the finite speed of light. 

• It is best if each system has its own observers with clocks that are 
synchronized. How can we do this? 

• We place observers with clocks throughout a given system. 



• If, when we bring all the clocks together at one spot at rest, all the clocks agree, 
then the clocks are said to be synchronized. But to move the clocks relative to 
each other to reposition them this might affect the synchronization. 

• So a better way would be to flash a bulb half way between each pair of clocks at 
rest and make sure the pulses arrive simultaneously at each clock. 

• This will require many measurements, but it is a safe way to synchronize the 
clocks. 

• We can determine the time of an event occurring far away from us by having a 
colleague at the event, with a clock fixed at rest, measure the time of the 
particular event, and send us the results, for example, by telephone or even by 
mail. 

• If we need to check our clocks, we can always send light signals to each other 
over known distances at some predetermined time.

Einstein’s Postulates



Einstein’s Postulates
• Now we derive the correct transformation, called the Lorentz transformation, that makes the 

laws of physics invariant between inertial frames of reference. We use the coordinate systems 
described by Figure.

• At t = t’ =0, the origins of the two coordinate systems are coincident, and the system K’ is
traveling along the x and x’ axes.

• For this special case, the Lorentz transformation equations are:



Einstein’s Postulates

• Relativistic factor: We commonly use the symbols β and the relativistic factor γ to represent two 
longer expressions:

which allows the Lorentz transformation equations to be rewritten in compact form as:

Note that γ  1 (γ = 1 when 𝒗 =0).



The Lorentz Transformation

• We use Einstein’s two postulates to find a transformation between inertial frames of reference 
such that all the physical laws, including Newton’s laws of mechanics and Maxwell’s 
electrodynamics equations, will have the same form. 

• We use the fixed system K and moving system K.

• At t = t’ = 0 the origins and axes of both systems are coincident, and system K’ is moving to the 
right along the x axis. 

• A flashbulb goes off at the origins when t = t’ = 0.

• According to postulate 2, the speed of light will be c in both systems, and the wavefronts
observed in both systems must be spherical and described by



The Lorentz Transformation

• These two equations are inconsistent with a Galilean transformation because a
wavefront can be spherical in only one system when the second is moving at
speed 𝑣 with respect to the first. 

• The Lorentz transformation requires both systems to have a spherical wavefront
centered on each system’s origin.

• Another clear break with Galilean and Newtonian physics is that we do not
assume that t = t’. 

• Each system must have its own clocks and metersticks as indicated in a two-
dimensional system in Figure. 

• Because the systems move only along their x axes, observers in both systems 
agree by direct observation that

In order to make sure accurate
event measurements can be 

obtained, synchronized clocks
and uniform measuring sticks 

are placed throughout a
system.



• We know that the Galilean transformation 

x’ = x - vt

is incorrect, but what is the correct transformation? 

• We require a linear transformation so that each event in system K corresponds to 
one, and only one, event in system K’. 

• The simplest linear transformation is of the form

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)



The Lorentz Transformation

• We will see if such a transformation answers. 

• The parameter γ cannot depend on x or t because the transformation must be linear. 

• The parameter γ must be close to 1 for v << c in order for Newton’s laws of mechanics to be valid 
for most of our measurements. 

• We can use similar arguments from the standpoint of an observer stationed in system K’ to obtain 
an equation

• Because postulate 1 requires that the laws of physics be the same in both reference systems, we 
demand that γ’ = γ. 

𝑥 = 𝛾′(𝑥′ + 𝑣𝑡′)



• Notice that the only difference between 

and 

other than the primed and unprimed quantities being switched is that 
𝑣 → -𝑣, which is reasonable because according to the observer in each 
system, the other observer is moving either forward or backward.

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)

𝑥 = 𝛾′(𝑥′ + 𝑣𝑡′)



The Lorentz Transformation
• According to postulate 2, the speed of light is c in both systems. 

• Therefore, in each system the wavefront of the flashbulb light pulse 
along the respective x axes must be described by 

x = ct and x’ = ct’, 

which we substitute into Equations to obtain

𝑐𝑡′ = 𝛾(𝑐𝑡 − 𝑣𝑡) 𝑐𝑡 = 𝛾′(𝑐𝑡′ − 𝑣𝑡′)



The Lorentz Transformation

We substitute the value of 𝑡 from second equation into the first equation.



The Lorentz Transformation
the equation as



The Lorentz Transformation



The Lorentz Transformation

• Notice that these Lorents transformation Equations both reduce to the Galilean transformation
when 𝒗 << c. 

• It is only for speeds that approach the speed of light that the Lorentz transformation equations 
become significantly different from the Galilean equations. 

• In our studies of mechanics we normally do not consider such high speeds, and our previous 
results probably require no corrections.

• The laws of mechanics credited to Newton are still valid over the region of their applicability.

• Even for a speed as high as the Earth orbiting about the sun, 30 km/s, the value of the relativistic 
factor 𝛾 is 1.000000005. 



• We show a plot of the relativistic parameter 𝜸 versus speed in Figure.

• As a rule of thumb, we should consider using the relativistic equations 
when 𝑣/c > 0.1 (𝛾 ≈ 1.005).

A plot of the relativistic factor 𝛾 as a function 
of speed 𝑣/c, showing that 𝜸 becomes large 
quickly as 𝒗 approaches c.



The Lorentz Transformation

• The implications of Lorentz transformation.

• The linear transformation equations ensure that a single event in one 
system is described by a single event in another inertial system. 

• However, space and time are not separate.

• In order to express the position of x in system K’, we must use both x’
and t’. 



• We have also found that the Lorentz transformation does 
not allow a speed greater than c; the relativistic factor 𝛾
becomes imaginary in this case. 

• For relatively low velocities where the relativity factor 𝜸 is 
close to one, the binomial expansion can be used to 
evaluate the small relativistic corrections.

http://hyperphysics.phy-astr.gsu.edu/hbase/alg3.html#bef


Time Dilation

• The Lorentz transformations have immediate consequences with respect to time
and length measurements made by observers in different inertial frames. 

• We shall consider time and length measurements separately and then see how 
they are related to one another.

• Consider again our two systems K and K’ with system K fixed and system K’ moving
along the x axis with velocity റ𝑣 as shown in the next Figure. 



Frank measures the proper time for the time interval that a sparkler stays lit. 
His clock is at the same position in system K when the sparkler is lit in (a) and when it goes out in (b).
Mary, in the moving system K’, is beside the sparkler at position x1’ when it is lit in (a), but by the time it goes out in 
(b), she has moved away. 
Melinda, at position x2’, measures the time in system K’ when the sparkler goes out in (b).

Time Dilation

• Frank lights a sparkler at position x1 in system K. 

• A clock placed beside the sparkler indicates the time 
to be t1 when the sparkler is lit and t2 when the 
sparkler goes out in next Figure (b). 

• The sparkler burns for time T0, where T0 = t2 - t1. 

• The time difference between two events occurring at 
the same position in a system as measured by a clock 
at rest in the system is called the proper time. 

• We use the subscript zero on the time difference T0 to 
denote the proper time.



Time Dilation

• Now what is the time as determined by Mary who is passing by (but at rest in her own system K’)?
• All the clocks in both systems have been synchronized when the systems are at rest with respect 

to one another. 
• The two events (sparkler lit and then going out) do not occur at the same place according to 

Mary.
• She is beside the sparkler when it is lit, but she has moved far away from the sparkler when it 

goes out (Figure b). 
• Melinda, also at rest in system K’, is beside the sparkler when it goes out. 
• Mary and Melinda measure the two times for the sparkler to be lit and to go out in system K’ as 

times t’1 and t’2. 
• The Lorentz transformation relates these times to those measured in system K as



Time Dilation

• In system K the clock is fixed at x1, so x2 - x1 = 0; that is, the two events occur at the 
same position. 

• The time t2 - t1 is the proper time T0, and we denote the time difference t’2 – t’1 = T’ as 
measured in the moving system K:

• Thus the time interval measured in the moving system K’ is greater than the time 
interval measured in system K where the sparkler is at rest. 



• This effect is known as time dilation and is a direct result of Einstein’s 
two postulates. 

• The time measured by Mary and Melinda in their system K’ for the 
time difference was greater than T0 by the relativistic factor 𝜸 (𝛾 > 1).

• The two events, sparkler being lit and then going out, did not occur at 
the same position (x’2 ≠ x’1) in system K’ (Figure b). 

• This result occurs because of the absence of simultaneity. 

• The events do not occur at the same space and time coordinates in 
the two systems. 

• It requires three clocks to perform the measurement: one in system K 
and two in system K’.



Time Dilation

• The time dilation result is often interpreted by saying that moving clocks run slow 
by the factor γ-1, and sometimes this is a useful way to remember the effect.

• The moving clock in this case can be any kind of clock. 

• It can be the time a sparkler stays lit, the time between heartbeats, the time 
between ticks of a clock, or the time spent in a class lecture. 

• In all cases, the actual time interval on a moving clock is greater than the proper 
time as measured on a clock at rest. 



• The proper time is always the smallest possible time interval 
between two events.

• Each person will claim the clock in the other (moving) system is 
running slow. 

• If Mary had a sparkler in her system K’ at rest, Frank (fixed in system 
K) would also measure a longer time interval on his clock in system 
K because the sparkler would be moving with respect to his system.

• This is consistent with the earlier result. In this case T > T0’. 

• The proper time is always the shortest time interval, and we find that 
the clock in Mary’s system K’ is “running slow.”



Time Dilation
• The preceding results naturally seem a little strange to us. 
• In relativity we often carry out thought (or gedanken from the German word) experiments. 
• Consider the following gedanken experiment. 
• Mary, in the moving system K’, flashes a light at her origin along her y’ axis.
• The light travels a distance L, reflects off a mirror, and returns. 
• Mary says that the total time for the journey is T’0 = t’2 – t’1 = 2L/c, and this is indeed the proper time, because 

the clock in K beside Mary is at rest.

• Mary, in system K’, flashes a light along her y’ axis 
and measures the proper time 𝑻’𝟎 = 𝟐𝑳/𝒄 for the 
light to return. 

• In system K, Frank will see the light travel partially 
down his x axis, because system K’ is moving. 

• Fred times the arrival of the light in system K. 
• The time interval T that Frank and Fred measure is 

related to the proper time by T = γT’0.



Length Contraction



Length Contraction
• Let’s consider what might happen to the length of objects in relativity. 

• Let an observer in each system K and K’ have a meterstick at rest in his or her own respective system.

• Each observer lays the stick down along his or her respective x axis, putting the left end at xl (or xl’) 
and the right end at xr (or x’r). 

• Frank in system K measures his stick to be L0 = xr - xl. 

• Similarly, in system K’, Mary measures her stick at rest to be L’0 = x’r – xl’ = L0. 

• Every observer measures a meterstick at rest in his or her own system to have the same length, 
namely 1 meter. 

• The length as measured at rest is called the proper length.



• Let system K be at rest and system K’ move along the x axis with 
speed v.

• Frank, who is at rest in system K, measures the length of the stick 
moving in K’.

• The difficulty is to measure the ends of the stick simultaneously. 

• We insist that Frank measure the ends of the stick at the same time 
so that t = tr = tl. 

• The events denoted by (x, t) are (xl , t) and (xr , t). 

• We find



Length Contraction
• The meterstick is at rest in system K’, so the length xr’ – xl’ must be the proper length L’0. 
• Denote the length measured by Frank as L = xr - xl. 
• The times tr and tl are identical, as we insisted, so tr - tl = 0. 
• Notice that the times of measurement by Mary in her system, tl’ and t’r , are not identical. 
• It makes no difference when Mary makes the measurements in her own system, because the stick is 

at rest.
• However, it makes a big difference when Frank makes his measurements, because the stick is moving 

with speed v with respect to him. 
• The measurements must be done simultaneously! 
• With these results, the previous equation becomes



Length Contraction
• Notice that L0 > L, so the moving meterstick shrinks according to Frank. 

• This effect is known as length or space contraction and is characteristic of relative motion. 

• This effect is also sometimes called the Lorentz-FitzGerald contraction because Lorentz and FitzGerald 
independently suggested the contraction as a way to solve the electrodynamics problem. 

• This effect, like time dilation, is also reciprocal.

• Each observer will say that the other moving stick is shorter. 

• There is no length contraction perpendicular to the relative motion, however, because y’ = y and z’ = z. 

• Observers in both systems can check the length of the other meterstick placed perpendicular to the 
direction of motion as the metersticks pass each other. 

• They will agree that both metersticks are 1 meter long.



Length Contraction
• We can perform another gedanken experiment to arrive at the same result.
• This time we lay the meterstick along the x’ axis in the moving system K’ (Figure a). 
• The two systems K and K’ are aligned at t = t’ = 0. 
• A mirror is placed at the end of the meterstick, and a flashbulb goes off at the origin at t = t’ = 0,

sending a light pulse down the x’ axis, where it is reflected and returned. 
• Mary sees the stick at rest in system K’ and measures the proper length L0 (which should of course be 

one meter). 
• Mary uses the same clock fixed at x’ = 0 for the time measurements. 
• The stick is moving at speed v with respect to Frank in the fixed system K. 
• The clocks at x = x’ = 0 both read zero when the origins are aligned just when the flashbulb goes off.
• Notice the situation shown in system K (Figure b), where by the time the light reaches the mirror, the 

entire stick has moved a distance vt1. 
• By the time the light has been reflected back to the front of the stick again, the stick has moved a 

total distance vt2.



Length Contraction



Length Contraction

• The effect of length contraction along the direction of travel may strongly affect the appearances of 
two- and three-dimensional objects. 

• We see such objects when the light reaches our eyes, not when the light actually leaves the object.

• Thus, if the objects are moving rapidly, we will not see them as they appear at rest. 

• Figure shows the appearance of several such objects as they move.

• Note that not only do the horizontal lines become contracted, but the vertical lines also become 
hyperbolas. 



• In this computer simulation, the rectangular boxes are drawn as if the observer were 5 units in front of 
the near plane of the boxes and directly in front of the origin. 

• The boxes are shown at rest on the left. 
• On the right side, the boxes are moving to the right at a speed of v = 0.8c. 
• The horizontal lines are only length contracted, but notice that the vertical lines become hyperbolas. 
• The objects appear to be slightly rotated in space. 
• The objects that are further away from the origin appear earlier because they are photographed at an 

earlier time and because the light takes longer to reach the camera (or our eyes).



• We show in Figure, a row of bars moving to the right with speed v = 0.9c. 
The result is quite surprising.


