
Probability, Wave Functions, and the
Copenhagen Interpretation
• We learned in elementary physics that the

instantaneous wave intensity of
electromagnetic radiation (light) is
Є0cE2 where E is the electric field.

• Thus the probability of observing light is
proportional to the square of the electric
field.

• In the double-slit light experiment, the
electric field of the light wave is relatively
large at the bright spots on the screen and
small in the region of the dark places.

• After only 20 flashes we cannot make any
prediction as to the eventual pattern, but
we still know that the probability of
observing a flash is proportional to the
square of the electric field.

Young’s double slit

experiment



• We now briefly review this calculation that is normally given in introductory physics
courses.

• If the distance from the central ray along the screen we are observing in an
experiment is denoted by y, the probability for the photon to be found between y and
y + dy is proportional to the intensity of the wave (E2) times dy.



• For Young’s double-slit experiment, the value of the electric field 𝑬
produced by the two interfering waves is large where the flash is likely
to be observed and small where it is not likely to be seen.

• By counting the number of flashes we relate the energy flux I (called
the intensity) of the light to the number flux, N per unit area per unit
time, of photons having energy hf.

• In the wave description, we have I = Є0c˂E2˃, and in what appears to
be the particle description, I = Nhf.

• The flux of photons N, or the probability P of observing the photons,
is proportional to the average value of the square of the electric field
˂E2˃.



• How can we interpret the probability of finding the electron in the wave
description?

• First, the localization of a wave can be accomplished by using a wave packet.

• We used a wave function (x,t) to denote the superposition of many waves to
describe the wave packet.

• In the case of light, we know that the electric field 𝐸 and magnetic field 𝐵 satisfy
a wave equation.

• In electrodynamics either 𝐸 or 𝐵 serves as the wave function .

• For particles (say electrons) a similar behavior occurs.

• In this case the wave function (x,t) determines the probability, just as the flux

of photons N arriving at the screen and the electric field 𝐸 determined the
probability in the case of light.



• For matter waves having a de Broglie wavelength, it is the wave
function  that determines the probability of finding a particle at a
particular position in space at a given time.

• The value of the wave function  has no physical significance itself, and
it can have a complex value (containing both real and imaginary
numbers).

• The quantity 𝚿 𝟐 is called the probability density and represents the
probability of finding the particle in a given unit volume at a given
instant of time.



• In general, (x, y, z, t) is a complex quantity and depends on the spatial
coordinates x, y, and z as well as time t.

• The complex nature will be of no concern to us: we use  times its complex
conjugate * when finding probabilities.

• We are interested here in only a single dimension y along the observing screen and
for a given time t.

• In this case * dy = Ψ 2dy is the probability of observing an electron in the
interval between y and y + dy at a given time, and we call this P(y) dy.

• Because the electron has to have a probability of unity of being observed
somewhere along the screen, we integrate the probability density over all space by
integrating over y from - to .

• This process is called normalization.
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• Max Born (Nobel Prize, 1954), one of the founders of the quantum theory,
first proposed this probability interpretation of the wave function in
1926.

• The determination of the wave function (x, t) is discussed in much more
detail later.

• The use of wave functions (x, y, z, t) rather than the classical positions
x(t), y(t), z(t) represents a clean break between classical and modern
physics.

• Physicists have developed a set of rules and procedures in quantum
theory to determine physical observables like position, momentum, and
energy.



The Copenhagen Interpretation

• Schrödinger and Heisenberg worked out independent and separate mathematical models for the
quantum theory in 1926.

• Schrödinger’s theory is somewhat easier to understand and is based on waves.

• Paul Dirac reported his relativistic quantum theory in 1928.

• Today there is little disagreement about the mathematical formalism of quantum theory.

• We want to examine the Copenhagen interpretation, because it is the mainstream interpretation of
quantum theory.

• Heisenberg announced his uncertainty principle in early 1927.

• Bohr and Heisenberg had many discussions in 1927 formulating the interpretation of quantum
mechanics now known as the “Copenhagen interpretation,” “Copenhagen school,” or sometimes
unkindly as “Copenhagen orthodoxy.”

• It was strongly supported by Max Born and Wolfgang Pauli.



• There are various formulations of the interpretation, but it is generally based on
the following:

1.The uncertainty principle of Heisenberg

2.The complementarity principle of Bohr

3.The statistical interpretation of Born, based on probabilities
determined by the wave function

• Together these three concepts form a logical interpretation of the physical
meaning of quantum theory.

• According to the Copenhagen interpretation, physics depends on the outcomes of
measurement.



• Consider a single electron passing through the two-slit experiment.

• We can determine precisely where the electron hits the screen by noting a flash.

• The Copenhagen interpretation rejects arguments about where the electron was
between the times it was emitted in the apparatus (and subsequently passed
through the two slits) and when it flashed on the screen.

• The measurement process itself randomly chooses one of the many possibilities
allowed by the wave function, and the wave function instantaneously changes to
represent the final outcome.

• Bohr argued that it is not the task of physics to find out how nature is, because we
can never understand the quantum world or assign physical meaning to the wave
function.

• Bohr and Heisenberg argued that measurement outcomes are the only reality
in physics.



• Many physicists objected (and some still do!) to the Copenhagen interpretation for
widely varying reasons.

• One of the basic objections is to its nondeterministic nature.

• Some also object to the vague measurement process that converts probability
functions into nonprobabilistic measurements.

• Famous physicists who objected to the Copenhagen interpretation were Albert
Einstein, Max Planck, Louis de Broglie, and Erwin Schrödinger.

• Einstein and Schrödinger never accepted the Copenhagen interpretation.

• Einstein was particularly bothered by the reliance on probabilities, and he wrote
Born in 1926 that “God does not throw dice.”

• Nonetheless, it is fair to say that the great majority of physicists today accept the
Copenhagen interpretation as the primary interpretation of quantum
mechanics.



• Several paradoxes have been proposed by physicists to refute the Copenhagen
interpretation.

• They include the famous Schrödinger cat paradox, the Einstein-Podolsky-Rosen
paradox, and Bell’s theorem (or inequality).

• Space does not allow us to describe these paradoxes.

• A Princeton University graduate student, Hugh Everett III, announced an alternate
interpretation to the Copenhagen view in 1957.

• In Everett’s “Many Worlds” interpretation, the concept of parallel universes is
invoked—in itself such a weird idea that it has not gained wide acceptance, but it
overcomes some objections to the Copenhagen interpretation.

• Since 1957 there have been several versions of the Many Worlds interpretation
presented, and some physicists prefer it over the Copenhagen interpretation.

• Nevertheless, the Copenhagen interpretation remains the favored
interpretation.



Particle in a Box

• Let’s now consider the situation of a particle of mass m trapped in a one-
dimensional box of width l.

• We used the uncertainty principle to calculate the minimum kinetic energy of
such a particle.

• Now let’s determine the possible energies of such a particle.

• Because of our discussion in the previous section we want to use the wave
nature of the particle in this determination.

• First, what is the most probable location of the particle in the state with the
lowest energy at a given time, say t = 0, so that ψ(x, 0) = ψ(x)?



• To find the probable location, we will treat the particle as a sinusoidal 
wave. 

• The particle cannot be physically outside the confines of the box, so 
the amplitude of the wave motion must vanish at the walls and 
beyond. 

• In the language of the wave function, its probability of being outside is 
zero, so the wave function must vanish outside.

• The wave function must be continuous, and the probability 
distribution can have only one value at each point in the box. 

• For the probability to vanish at the walls, we must have an integral 
number of half wavelengths λ/2 fit into the box. 



Particle in a Box

• All the possible ways of fitting 

waves into a one dimensional box of 

length l. 

• The left side shows the wave

functions for the four lowest energy

values. 

• The right side shows the

corresponding probability

distributions.



• The requirement of an integral number of half wavelengths λ/2 means that

• The possible wavelengths are quantized, and the wave shapes will have 
sin(nπx/l) factors. 

• If we treat the problem nonrelativistically and assume there is no potential
energy, the energy E of the particle is

• If we insert the values for λn, 
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• The possible energies of the particle are quantized, and each of these
energies En is a possible energy level.

• Note that the lowest energy is E1 = h2/8ml2.

• Because we assumed the potential energy to be zero, En is also equal to the
kinetic energy.

• The probability of observing the particle between x and x + dx in each state is
Pndx ∝ 𝜓𝑛(𝑥)

2dx.

• Notice that E0 = 0 is not a possible state, because n = 0 corresponds to ψ0 = 0.

• The lowest energy level is therefore E1, with a probability density

P1 ∝ 𝜓𝑛(𝑥)
2, shown in Figure.

• The most probable location for the particle in the lowest energy state is in
the middle of the box.



• This particle-in-a-box model is more important than it might seem.

• It is our first application of what we call “quantum theory” or
“quantum mechanics.”

• Notice how the quantization of energy arises from the need to fit a
whole number of half-waves into the box and how we obtained the
corresponding probability densities of each of the states.

• The concept of energy levels, as first discussed in the Bohr model, has
surfaced in a natural way by using waves.

• The procedure followed is the same as finding the allowed modes of
standing waves inside the box.

• We can use all the results that we learned about waves in elementary
physics.



The Schrödinger Wave Equation

• The Austrian physicist Erwin Schrödinger (Nobel Prize, 1933) was presenting a
seminar at the University of Zurich in November 1925 on de Broglie’s wave
theory for particles when Peter Debye suggested that there should be a wave
equation.

• Within a few weeks Schrödinger had found a suitable wave equation based on
what he knew about geometrical and wave optics.

• In our previous study of elementary physics, we learned that Newton’s laws,
especially the second law of motion, govern the motion of particles.

• We need a similar set of equations to describe the wave motion of particles; that is,
we need a wave equation that is dependent on the potential field (for example,
the Coulomb or strong force field) that the particle experiences.



• We can then find the wave function that will allow us to calculate the
probable values of the particle’s position, energy, momentum, and so on.

• We point out that although our procedure is similar to that followed in classical
physics, we will no longer be able to calculate and specify the exact
position, energy, and momentum simultaneously.

• Our calculations now must be consistent with the uncertainty principle and the
notion of probability.

• There are several possible paths through which we could plausibly obtain the
Schrödinger wave equation.

• Because none of the methods is actually a derivation, we prefer to present
the equation and indicate its usefulness.



• Its ultimate correctness rests on its ability to explain and describe experimental
results.

• The Schrödinger wave equation in its time-dependent form for a particle
moving in a potential V in one dimension is

• where i = −1 is an imaginary number and we have used partial derivatives.

• Both the potential V and wave function Ψ may be functions of space and time,

V(x, t) and Ψ(x, t).

• The equation in three dimensions is fairly straightforward.
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• We will restrict ourselves to the one-dimensional form now.

• Let’s compare the equation with the classical wave equation given by

• The wave function may be as varied as the amplitude of a water wave, a
guitar-string vibration, or even the electric field E or magnetic field B.

• Notice that the classical wave equation contains a second-order time
derivative, whereas the Schrödinger wave equation contains only a
first-order time derivative.

• This already gives us some idea that we are dealing with a somewhat
different phenomenon.
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• Despite the fact that the Schrödinger wave equation has not been
derived, it is still a useful tool because it describes experimental
results.

• In science, and especially in physics, the test of a theoretical
calculation is that it agrees with what we observe.

• We apply the Schrödinger wave equation to several simple situations
to illustrate its usefulness.

• We discussed wave motion and the formation of wave packets from 
waves. 



• For a wave of wave number k and angular frequency  moving in the x direction,
the wave function is

• This equation is not the most general form of a wave function, which may include
both sines and cosines.

• Our wave function is also not restricted to being real.

• A more general form of wave function including the imaginary part also is given
as below:

• which also describes a wave moving in the x direction.

• In general the amplitude A may also be complex.

Ψ 𝑥, 𝑡 = 𝐴 sin 𝑘𝑥 − 𝜔𝑡 + 𝜙

Ψ 𝑥, 𝑡 = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 + 𝑖 sin 𝑘𝑥 − 𝜔𝑡



Normalization and Probability

• The probability P(x)dx of a particle being between x and x + dx

• The probability of the particle being between x1 and x2 is given by

• The wave function must also be normalized so that the probability
of the particle being somewhere on the x axis is 1.
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• The wave function ei(kx-wt) represents a particle under zero net
force (constant V ) moving along the x axis.

• There is a problem with this wave function, because if we try to
normalize it, we obtain an infinite result for the integral.

• This occurs because there is a finite probability for the particle to be
anywhere along the x axis.

• Over the entire x axis, these finite probabilities add up, when
integrated, to infinity.

• The only other possibility is a zero probability, but that is not an
interesting physical result.



• Because this wave function has precise k and  values, it represents a
particle having a definite energy and momentum.

• According to the uncertainty principle, because ΔE=0 and Δp=0, we must
have Δt=∞ and Δx=∞.

• We cannot know where the particle is at any time.

• We can still use such wave functions if we restrict the particle to certain
positions in space, such as in a box or in an atom.

• We can also form wave packets from such functions in order to localize the
particle.



Properties of Valid Wave Functions

• The Schrödinger wave equation, there are certain properties (often called boundary
conditions) that an acceptable wave function must also satisfy:

1. In order to avoid infinite probabilities, must be finite everywhere.

2. In order to avoid multiple values of the probability, must be single valued.

3. For finite potentials,  and
𝜕
𝜕𝑥

must be continuous. This is required because the

second-order derivative term in the wave equation must be single valued. (There are exceptions to
this rule when V is infinite.)

4. In order to normalize the wave functions,  must approach zero as x approaches ±.

• Solutions for  that do not satisfy these properties do not generally correspond to physically
realizable circumstances.



Time-Independent Schrödinger Wave Equation

• In many cases, the potential will not depend explicitly on time.

• The dependence on time and position can then be separated in the
Schrödinger wave equation.

• We obtain

• We divide by 𝚿(x) f (t ) to yield
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• The left side depends only on time, and the right side depends only on spatial coordinates.

• We have changed the partial derivatives to ordinary derivatives, because each side
depends on only one variable.

• It follows that each side must be equal to a constant (which we label B), because one
variable may change independently of the other.

• We integrate the left side in an effort to determine the value of B.

• We integrate both sides and find

• where C is an integration constant that we may choose to be 0.
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• From this equation we determine f to be

• If we compare this function for f(t) to the free-particle wave function that has the time
dependence e-iwt, we see that B = ћω = E.

• This is a general result.

• We now have,

• This equation is known as the time-independent Schrödinger wave equation, and it is a
fundamental equation in quantum mechanics.
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• f(t) can be rewritten as

• and the wave function 𝚿(x, t) becomes

• We will restrict our attention for the present to time-independent potentials in
one space dimension.

• Many important and useful results can be obtained from this nonrelativistic
and one-dimensional form of quantum mechanics, because usually only the
spatial part of the wave function 𝚿(x) is needed.

• Therefore, we need to use the time-independent form of the Schrödinger wave
equation.

𝑓 𝑡 = 𝑒−𝑖𝜔𝑡

Ψ 𝑥, 𝑡 = 𝜓(𝑥)𝑒−𝑖𝜔𝑡



• Let’s examine the probability density Ψ*Ψ.

• For the case where the potential does not depend on time, we have

• The probability distributions are constant in time.

• We have seen in introductory physics the phenomenon of standing waves (for
example, oscillations of strings fixed at both ends).

• Such standing waves can be formed from traveling waves moving in opposite
directions.

• In quantum mechanics, we say the system is in a stationary state.

Ψ∗Ψ = 𝜓2(𝑥) 𝑒𝑖𝜔𝑡𝑒−𝑖𝜔𝑡

Ψ∗Ψ = 𝜓2(𝑥)



• Newton’s second law (F = Τdp dt) and Schrödinger’s wave equation are both
differential equations.

• They are both postulated to explain certain observed behavior, and experiments show
that they are successful.

• Newton’s second law can be derived from the Schrödinger wave equation.

• Newton’s laws may seem more fundamental—because they describe the precise
values of the system’s parameters, whereas the wave equation only produces wave
functions that give probabilities—but by now we know from the uncertainty
principle that it is not possible to know simultaneously precise values of both
position and momentum and of both energy and time.

• Classical mechanics only appears to be more precise because it deals with
macroscopic phenomena.

• The underlying uncertainties in macroscopic measurements are just too small to
be significant.

Comparison of Classical and Quantum Mechanics 



• It was shown early in the 1800s that wave optics was needed to explain the observed
phenomena of diffraction and interference.

• Ray optics is a good approximation as long as the wavelength of the radiation is much
smaller than the dimensions of the apertures and obstacles it passes.

• Rays of light are characteristic of particle-like behavior.

• In order to describe interference phenomena, wave optics is required.

• Similarly for macroscopic objects, the de Broglie wavelength is so small that wave
behavior is not apparent.

• However, advances in instrumentation and experimentation made it possible to
observe behavior at the atomic level, and eventually the wave descriptions and
quantum mechanics were required to understand all the data.

• Classical mechanics is a good macroscopic approximation and is accurate enough
in the limit of large quantum numbers, but as far as we know now, there is only one
correct theory, and that is quantum mechanics.



Expectation Values

• The wave equation formalism must be able to determine values of measurable
quantities, including position, momentum, and energy.

• Now we will discuss how the wave function is able to provide this information.

• We will do this here in only one dimension.

• We will also evaluate the values of the physical quantities for a given time t,
because in general the whole system, including the values of the physical
quantities, evolves with time.

• Consider a measurement of the position x of a particular system.

• If we make three measurements of the position, we are likely to obtain three
different results.



• If our method of measurement is accurate, then there is some physical significance to
the average of our measured values of x.

• The precision of our result improves as more measurements are made.

• In quantum mechanics we use wave functions to calculate the expected result of the
average of many measurements of a given quantity.

• We call this result the expectation value; the expectation value of x is denoted by
˂x˃.

• Any measurable quantity for which we can calculate the expectation value is called a
physical observable.

• The expectation values of physical observables (for example, position, linear
momentum, angular momentum, and energy) must be real, because the experimental
results of measurements are real.



• Let’s first determine average values.

• Consider a particle that is constrained to move along the x axis.

• If we make many measurements of the particle, we may find the particle N1 times at
x1, N2 times at x2, Ni times at xi, and so forth.

• The average value of x, denoted by ഥ𝒙 [or (x)av], is then

• We can change from discrete to continuous variables by using the probability P(x, t)
of observing the particle at a particular x.

• The previous equation then becomes
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• In quantum mechanics we must use the probability distribution

P(x)dx = Ψ*(x, t) Ψ(x, t)dx, to determine the average or expectation value.

• The expectation value <x> can be found by

• The denominator is the normalization equation.

• If the wave function is normalized, the denominator becomes 1.

• The expectation value is then given by
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• The same general procedure can be used to find the expectation value of any
function g(x) for a normalized wave function Ψ(x, t).

• The wave function can provide only the expectation value of a given function g(x)
that can be written as a function of x.

• It cannot give us the value of each individual measurement.

• When we say the wave function provides a complete description of the system, we
mean that the expectation values of the physical observables can be determined.
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• The simultaneous values of the position x and momentum p must be consistent
with the uncertainty principle.

• To find the expectation value of p, we first need to represent p in terms of x and t.

• As an example, let’s consider once more the wave function of the free particle,
Ψ(x, t ) = ei(kx-wt).

• If we take the derivative of Ψ(x, t) with respect to x,

• because k = p/ћ, this becomes

• After rearrangement, this yields
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• An operator is a mathematical operation that transforms one function into another.

• For example, an operator, denoted by ෠𝒬, transforms the function f (x) by ෡𝓠f(x) = g(x).

• In the previous wave function equation, the quantity –iћ(∂/∂x) is operating on the
function Ψ(x, t) and is called the momentum operator Ƹ𝑝, where the ˆ sign over the
letter p indicates an operator.

• The existence of the momentum operator is not unique.

• Each of the physical observables has an associated operator that is used to find that
observable’s expectation value.

• In order to compute the expectation value of some physical observable 𝒬, the operator
෠𝒬 must be placed between Ψ* Ψ and so that it operates on Ψ(x, t) in the order shown:

Ƹ𝑝 = −𝑖ℏ
𝜕

𝜕𝑥

𝒬 = න
−∞

∞

Ψ∗ 𝑥, 𝑡 ෠𝒬Ψ 𝑥, 𝑡 𝑑𝑥



• Thus, the expectation value of the momentum becomes

• The position x is its own operator.

• Operators for observables that are functions of both x and p can be constructed
from x and Ƹ𝑝.

• Now let’s take the time derivative of the free-particle wave function.

• We substitute ω = E / ћ, and then rearrange to find

𝑝 = −𝑖ℏන
−∞

∞

Ψ∗ 𝑥, 𝑡
𝜕Ψ 𝑥, 𝑡

𝜕𝑥
𝑑𝑥

𝜕Ψ

𝜕𝑡
=

𝜕

𝜕𝑡
𝑒𝑖 𝑘𝑥−𝜔𝑡 = −𝑖𝜔𝑒𝑖 𝑘𝑥−𝜔𝑡 = −𝑖𝜔Ψ

𝐸 Ψ 𝑥, 𝑡 = 𝑖ℏ
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡



• We call the quantity operating on Ψ(x, t) the energy operator.

• It is used to find the expectation value <E> of the energy.

• Although we have found the momentum and energy operators for only the free
particle wave functions, they are general results.

• Later we will use these operators to determine the physical observables (position,
momentum, and energy, for example) and compare with the experimental results.

෠𝐸 = 𝑖ℏ
𝜕

𝜕𝑡

𝐸 = 𝑖ℏන
−∞

∞

Ψ∗ 𝑥, 𝑡
𝜕Ψ 𝑥, 𝑡

𝜕𝑡
𝑑𝑥



Infinite Square-Well Potential
• Now we would like to find the wave function for several possible

potentials and see what we can learn about the behavior of a system
having those potentials.

• We will find that some observables, including energy, have
quantized values.

• We begin by exploring the simplest such system—that of a particle
trapped in a box with infinitely hard walls that the particle cannot
penetrate.

• This is the same physical system as the particle in a box we presented,
but now we present the full quantum-mechanical solution.

• The potential, called an infinite square well, is shown in Figure and is
given by

𝑉 𝑥 = ቊ
∞ 𝑥 ≤ 0 , 𝑥 ≥ 𝐿
0 0 < 𝑥 < 𝐿

The potential is V = ∞ everywhere except the region 0 < x < L, where V = 0.



• The particle is constrained to move only between x = 0 and x = L, where the particle experiences no
forces.

• Although the infinite square-well potential is simple, we will see that it is useful because many
physical situations can be approximated by it.

• We will also see that requiring the wave function to satisfy certain boundary conditions leads to energy
quantization.

• We will use this fact to explore energy levels of simple atomic and nuclear systems.

• As we stated previously, most of the situations we encounter allow us to use the time-independent
Schrödinger wave equation.

• If we insert V = ∞ we see that the only possible solution for the wave function is ψ(x) = 0.

• Therefore, there is zero probability for the particle to be located at x ≤ 0 or x ≥ L.

• Because the kinetic energy of the particle must be finite, the particle can never penetrate into the region
of infinite potential.

• However, when V = 0,

• and let the wave number 𝑘 = Τ2𝑚𝐸 ℏ2.

𝑑2𝜓

𝑑𝑥2
= −

2𝑚𝐸

ℏ2
𝜓 = −𝑘2𝜓



• A suitable solution to this equation that satisfies the properties

• where A and B are constants used to normalize the wave function.

• The wave function must be continuous, which means that ψ(x) = 0 at both x = 0 and
x = L as already discussed.

• The proposed solution therefore must have B = 0 in order to have ψ(x = 0) = 0.

• If ψ(x = L) = 0, then A sin(kL) = 0, and because A = 0 leads to a trivial solution, we
must have

• where n is a positive integer.

• The value n = 0 leads to ψ = 0, a physically uninteresting solution, and negative
values of n do not give different physical solutions than the positive values.

• The wave function is now

𝜓 𝑥 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥

𝑘𝐿 = 𝑛𝜋

𝜓𝑛 𝑥 = 𝐴 sin
𝑛𝜋𝑥

𝐿
𝑛 = 1, 2, 3, …



• The property that dψ/dx must be continuous is not satisfied in this case, because of
the infinite step value of the potential at x = 0 and x = L, and it creates no
problem.

• We normalize our wave function over the total distance -∞ < x < ∞.

• Substitution of the wave function yields

න
−∞

∞

𝜓𝑛
∗ 𝑥 𝜓𝑛 𝑥 𝑑𝑥 = 1

𝐴2න

0

𝐿

𝑠𝑖𝑛2
𝑛𝜋𝑥

𝐿
𝑑𝑥 = 1



• This is a straightforward integral and gives L/2, so that A2(L /2) = 1 and A =
(2/L)1/2.

• The normalized wave function becomes

• These wave functions are identical to the ones obtained for a vibrating string with
its ends fixed that are studied in elementary physics.

• The application of the boundary conditions here corresponds to fitting standing
waves into the box.

• It is not a surprise to obtain standing waves in this case, because we are
considering time-independent solutions.

• Because kn = nπ/L we have

𝜓𝑛 𝑥 =
2

𝐿
sin

𝑛𝜋𝑥

𝐿
𝑛 = 1, 2, 3, …

𝑘𝑛 =
𝑛𝜋

𝐿
=

2𝑚𝐸𝑛
ℏ2



• Notice the subscript n on kn and En denoting that they depend on the integer n and
have multiple values.

• This equation is solved for En to yield

• The possible energies En of the particle are quantized, and the integer n is a
quantum number.

• Notice that the results for the quantized energy levels are identical, when we treated
a particle in a one-dimensional box as a wave.

• The quantization of the energy occurs in a natural way from the application of the
boundary conditions (standing waves) to possible solutions of the wave equation.

• Each wave function ψn(x) has associated with it a unique energy En.

𝐸𝑛 = 𝑛2
𝜋2ℏ2

2𝑚𝐿2
𝑛 = 1, 2, 3, …



Wave functions ψn, probability densities 𝜓𝑛
2, and energy levels En for the 

lowest quantum numbers for the infinite square-well potential.



• The lowest energy level given by n = 1 is called the ground state, and its
energy is given by

• Note that the lowest energy cannot be zero because we have ruled out the
possibility of n = 0 (ψ0 = 0).

• Classically, the particle can have zero or any positive energy.

• If we calculate En for a macroscopic object in a box (for example, a tennis
ball in a tennis court), we will obtain a very small number for E1.

• Adjacent energy levels would be so close together that we could not measure
their differences.

• Macroscopic objects must have very large values of n.

𝐸1 =
𝜋2ℏ2

2𝑚𝐿2



• Classically, the particle has equal probability of being anywhere
inside the box.

• The classical probability density is P(x) = 1/L (for 0 < x < L, zero
elsewhere) for the probability to be 1 for the particle to be in the box.

• According to Bohr’s correspondence principle, we should obtain the
same probability in the region where the classical and quantum results
should agree, that is, for large n.

• The quantum probability density is (2/L)sin2(knx).

• For large values of n, there will be many oscillations within the box.

• The average value of sin2ϴ over one complete cycle is 1/2.



• The average value of sin2ϴ over many oscillations is also 1/2.

• Therefore, the quantum probability approaches 1/L in this limit, in
agreement with the classical result.

• If we had done a calculation, similar to that in the previous example,
for an electron in the nucleus, we would find energies on the order of
104 MeV, much larger than the rest energy of the electron.

• A correct relativistic treatment is necessary, and it would give electron
energies significantly less than 104 MeV but still much larger than
those of electrons actually observed being emitted from the nucleus in
β decay.

• Such reasoning indicates that electrons do not exist inside the
nucleus.



END OF THE LESSON.

THANKS FOR YOUR ATTENTION.


