
Special Theory of Relativity
LECTURE 4



Relativistic Momentum
• Newton’s second law, 𝑭 = 𝒅𝒑/𝒅𝒕, keeps its same form under a Galilean 

transformation, but we might not expect it to do so under a Lorentz
transformation. 

• There may be similar transformation difficulties with the conservation laws 
of linear momentum and energy. 

• We need to look at our previous definition of linear momentum to see 
whether it is still valid at high speeds. 

• According to Newton’s second law, for example, an acceleration of a 
particle already moving at very high speeds could lead to a speed greater 
than the speed of light. 

• That would be in conflict with the Lorentz transformation, so we expect 
that Newton’s second law might somehow be modified at high speeds. 



• Because physicists believe the conservation of linear momentum is 
fundamental, we begin by considering a collision that has no external 
forces.

• Frank (Fixed or stationary system) is at rest in system K holding a ball of 
mass m. 

• Mary (Moving system) holds a similar ball in system K’ that is moving in 
the x direction with velocity 𝑣 with respect to system K.

• Frank throws his ball along his y axis, and Mary throws her ball with 
exactly the same speed along her - y’ axis. 



• Frank is in the fixed K system, and Mary is in the moving K’ system. Frank 
throws his ball along his +y axis, and Mary throws her ball along her –y’
axis. The balls collide. The event is shown in Frank’s system in (a) and in 
Mary’s system in (b). (Because it is awkward to show the twins as they 
catch the ball, we have drawn them faintly and in a reversed position.)



• The two balls collide in a perfectly elastic collision, and each of them 
catches their own ball as it rebounds. 

• Each twin measures the speed of his or her own ball to be 𝒖𝟎 both 
before and after the collision. 

• We show the collision according to both observers in Figure. 

• Consider the conservation of momentum according to Frank as seen 
in system K. 



• The velocity of the ball thrown by Frank has components in his own 
system K of 

• If we use the definition of momentum, 𝒑 = 𝒎𝒗, the momentum of 
the ball thrown by Frank is entirely in the y direction:



• Because the collision is perfectly elastic, the ball returns to Frank 
with speed 𝒖𝟎 along the -y axis. 

• The change of momentum of his ball as observed by Frank in system K 
is

• In order to confirm the conservation of linear momentum, we need to 
determine the change in the momentum of Mary’s ball as measured 
by Frank. 

• We will let the primed speeds be measured by Mary and the 
unprimed speeds be measured by Frank (except that 𝑢0 is always the 
speed of the ball as measured by the twin in his or her own system).

• Mary measures the initial velocity of her own ball to be u’Mx = 0 and 
u’My = - 𝒖𝟎, because she throws it along her own –y’ axis. 



• To determine the velocity of Mary’s ball as measured by Frank, we need to 
use the velocity transformation equations. 

• If we insert the appropriate values for the speeds just discussed, we obtain

• Before the collision, the momentum of Mary’s ball as measured by Frank 
becomes



• For a perfectly elastic collision, the momentum after the collision is 

• The change in momentum of Mary’s ball according to Frank is

• The conservation of linear momentum requires the total change in 
momentum of the collision, ΔpF + ΔpM, to be zero. 

• When we look at these equations we can see that does not give zero.



• Linear momentum is not conserved if we use the conventions for 
momentum from classical physics even if we use the velocity 
transformation equations from the special theory of relativity. 

• There is no problem with the x direction, but there is a problem with 
the y direction along the direction the ball is thrown in each system.

• Rather than abandon the conservation of linear momentum, let us 
look for a modification of the definition of linear momentum that 
preserves both it and Newton’s second law. 

• We follow a procedure similar to the one we used in deriving the 
Lorentz transformation; we assume the simplest, most reasonable 
change that may preserve the conservation of momentum. 

• We assume that the classical form of momentum 𝒎𝒖 is multiplied by 
a factor that may depend on velocity. 



• Let the factor be (𝒖). 

• Our trial definition for linear momentum now becomes

• Momentum is conserved in the collision just described for the value 
of (𝒖) given by

• Notice that the form of Equation is the same as that found earlier for 
the Lorentz transformation.

• (u) = 𝜸

• However, this g is different; it contains the speed of the particle u, 
whereas the Lorentz transformation contains the relative speed 𝑣
between the two inertial reference frames.



• We can make a plausible determination for the correct form of the 
momentum if we use the proper time discussed previously to 
determine the velocity. 

• The momentum becomes

• We retain the velocity 𝒖 = ൗ𝒅𝒓
𝒅𝒕 as used classically, where Ԧ𝑟 is the 

position vector. 

• All observers do not agree as to the value of ൗ𝑑 Ԧ𝑟
𝑑𝑡 , but they do agree 

as to the value of ൗ𝑑 Ԧ𝑟
𝑑 , where 𝑑 is the proper time measured in 

the moving system K’.



• The value of dt / 𝒅 (= 𝜸) is obtained, where using the speed 𝑢 in the 
relation for 𝛾 to represent the relative speed of the moving (Mary’s) 
frame and the fixed (Frank’s) frame. 

• The definition of the relativistic momentum becomes,

where



• This result for the relativistic momentum reduces to the classical 
result for small values of 𝒖/𝒄. 

• The classical momentum expression is good to an accuracy of 1% as 
long as 𝑢 < 0.14𝑐. 

• We show both the relativistic and classical momentum in Figure.





Relativistic Energy

• The concept of force is best defined by its use in Newton’s laws of 
motion, and we retain here the classical definition of force as used in 
Newton’s second law.

• We studied the concept of momentum and found a relativistic 
expression.

• Therefore, we modify Newton’s second law to include our new 
definition of linear momentum, and force becomes



• Introductory physics presents kinetic energy as the work done on a 
particle by a net force. 

• We retain here the same definitions of kinetic energy and work. 

• The work 𝑾𝟏𝟐 done by a force 𝑭 to move a particle from position 1 to 
position 2 along a path 𝒔 is defined to be

• where K1 is defined to be the kinetic energy of the particle at position 1.  



• For simplicity, let the particle start from rest under the influence of 
the force 𝑭 and calculate the final kinetic energy 𝐾 after the work is 
done. 

• The force is related to the dynamic quantities.

• The work 𝑊 and kinetic energy 𝐾 are

where the integral is performed over the differential path d𝒔 = 𝒖𝒅𝒕.

• Because the mass is invariant, it can be brought outside the integral.

• The relativistic factor g depends on 𝒖 and cannot be brought outside 
the integral.



• Equation becomes

• The limits of integration are from an initial value of 0 to a final value 
of gu.



• The integral is straightforward if done by the method of integration by 
parts. 

• The result, called the relativistic kinetic energy, is

• This does not seem to resemble the classical result for kinetic energy, 

𝑲 =
𝟏

𝟐
𝒎𝒖𝟐.

• However, if it is correct, we expect it to reduce to the classical result 
for low speeds. 

• This equation is particularly useful when dealing with particles 
accelerated to high speeds.



• For speeds 𝒖 << 𝒄, we expand g in a binomial series as follows:

• where we have neglected all terms of power (𝒖/𝒄)𝟒 and greater, 
because 𝑢 << 𝑐. 

• This gives the following equation for the relativistic kinetic energy at 
low speeds:

• which is the expected classical result. 



• We show both the relativistic and classical kinetic energies in Figure.

• They diverge considerably above a velocity of 0.6c. 



Total Energy and Rest Energy 
• We rewrite

this equation in the form

𝑚𝑐2 is called the rest energy and is denoted by E0.



• This leaves the sum of the kinetic energy and rest energy to be 
interpreted as the total energy of the particle. 

• The total energy is denoted by E and is given by



Equivalence of Mass and Energy

• These last few equations suggest the equivalence of mass and energy, a 
concept attributed to Einstein. 

• The result that energy = mc2 is one of the most famous equations in 
physics. 

• Even when a particle has no velocity, and thus no kinetic energy, we still 
believe that the particle has energy through its mass, E0 = mc2.

• Nuclear reactions are certain proof that mass and energy are equivalent. 

• The concept of motion as being described by kinetic energy is preserved 
in relativistic dynamics, but a particle with no motion still has energy 
through its mass. 



• In order to establish the equivalence of mass and energy, we must 
modify two of the conservation laws that we learned in classical 
physics. 

• Mass and energy are no longer two separately conserved quantities.

• We must combine them into one law of the conservation of mass-
energy.

• We will see ample proof during the remainder of this book of the 
validity of this basic conservation law. 



• Even though we often say “energy is turned into mass” or “mass is 
converted into energy” or “mass and energy are interchangeable,” 
what we mean is that mass and energy are equivalent.

• Mass is another form of energy, and we use the terms mass-energy 
and energy interchangeably. 

• This is not the first time we have had to change our understanding of 
energy. 

• In the late eighteenth century it became clear that heat was another 
form of energy, and the nineteenth-century experiments of James 
Joule showed that heat loss or gain was related to work. 



• Consider two blocks of wood, each of mass m and having kinetic energy K, 
moving toward each other as shown in Figure. 

• A spring placed between them is compressed and locks in place as they collide. 



• Let’s examine the conservation of mass-energy. 

• The energy before the collision is 

and the energy after the collision is

• M is the rest mass of the system.

• Because energy is conserved, we have 

E =2mc2 + 2K = Mc2

and the new mass M is greater than the individual masses 2m. 

• The kinetic energy went into compressing the spring, so the spring has 
increased potential energy.



• Kinetic energy has been converted into mass, the result being that the 
potential energy of the spring has caused the system to have more 
mass. 

• We find the difference in mass ΔM by setting the previous two 
equations for energy equal and solving for ΔM = M - 2m.

• Linear momentum is conserved in this head-on collision.

• The fractional mass increase in this case is quite small and is given by 
fr = ΔM/2m.



• So we have

• For typical masses and kinetic energies of blocks of wood, this 
fractional increase in mass is too small to measure. 

• For example, if we have blocks of wood of mass 0.1 kg moving at 10 
m/s, 

𝒇𝒓 =

𝟏
𝟐𝒎𝒗𝟐

𝒎𝒄𝟐
=
𝟏

𝟐

𝒗𝟐

𝒄𝟐
=
𝟏

𝟐

𝟏𝟎𝒎/𝒔 𝟐

𝟑𝒙𝟏𝟎𝟖 𝒎/𝒔 𝟐
= 𝟔𝒙𝟏𝟎−𝟏𝟔



• In that equation we have used the nonrelativistic expression for kinetic
energy because the speed is so low.

• This very small numerical result indicates that questions of mass increase are
inappropriate for macroscopic objects such as blocks of wood and
automobiles crashing into one another.

• Such small increases cannot now be measured, but we will look at the
collision of two high-energy protons, in which considerable energy is available
to create additional mass.

• Mass-energy relations are essential in such reactions.



• Physicists believe that linear momentum is a more fundamental concept than kinetic energy.

• There is no conservation of kinetic energy, whereas the conservation of linear momentum in
isolated systems is inviolate as far as we know.

• We begin with this equation for the relativistic momentum written in magnitude form only.

• We square this result, multiply by c2, and rearrange the result

𝑝 = 𝛾𝑚𝑢 =
𝑚𝑢

1 − Τ𝑢2 𝑐2

𝑝2𝑐2 = 𝛾2𝑚2𝑢2𝑐2

= 𝛾2𝑚2𝑐4
𝑢2

𝑐2
= 𝛾2𝑚2𝑐4𝛽2

Relationship of Energy and Momentum



• We use for 𝜷𝟐 =
𝜸𝟐 −𝟏

𝜸𝟐
and find

• The first term on the right-hand side is just E2, and the second term is E0
2. The last equation

becomes

• We rearrange this last equation to find the result we are seeking, a relation between energy and
momentum.

• or

𝑝2𝑐2 = 𝛾2𝑚2𝑐4 1 −
1

𝛾2

= 𝛾2𝑚2𝑐4 −𝑚2𝑐4

𝑝2𝑐2 = 𝐸2 − 𝐸0
2

𝐸2 = 𝑝2𝑐2 + 𝐸0
2

Momentum- energy relation

𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4



• Momentum- energy relation is a useful result to relate the total energy of a particle with
its momentum.

• The quantities (𝑬𝟐 − 𝒑𝟐𝒄𝟐) and m are invariant quantities.

• Note that when a particle’s velocity is zero and it has no momentum, Momentum-
energy relation correctly gives E0 as the particle’s total energy.



Massless Particles
• This equation can also be used to determine the total energy for particles

having zero mass.

• For example, this equation predicts that the total energy of a photon is

• The energy of a photon is completely due to its motion.

• It has no rest energy, because it has no mass.

• We can show that the previous relativistic equations correctly predict that the speed of a
photon must be the speed of light c.

𝐸 = 𝑝𝑐 𝑃ℎ𝑜𝑡𝑜𝑛

𝐸2 = 𝑝2𝑐2 + 𝐸0
2



• For the total energy of a photon we set these two equations equal.

and

and get

• If we insert the value of the relativistic momentum from Relativistic momentum equato), we have

• The fact that u = c follows directly from this equation after careful consideration of letting m  0
and realizing that γ ∞.

• Massless particles must travel at the speed of light.

𝛾𝑚𝑐2 = 𝛾𝑚𝑢𝑐

𝑢 = 𝑐 𝑀𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝐸 = 𝑝𝑐 𝑃ℎ𝑜𝑡𝑜𝑛

𝐸 = 𝛾𝑚𝑐2 = 𝑝𝑐


