
LECTURE 3

Special Theory of Relativity



Addition of Velocities

• A spaceship launched from a space station quickly reaches its cruising speed of 
𝟎. 𝟔𝟎𝒄 with respect to the space station when a band of asteroids is observed 
straight ahead of the ship. 



• Mary, the commander, reacts quickly and orders her crew to blast away 
the asteroids with the ship’s proton gun to avoid a catastrophic collision. 

• Frank, the admiral on the space station, listens with apprehension to the 
communications because he fears the asteroids may eventually destroy his 
space station as well.

• Will the high-energy protons of speed 𝟎. 𝟗𝟗𝒄 be able to successfully blast 
away the asteroids and save both the spaceship and space station? 

• If 𝟎. 𝟗𝟗𝒄 is the speed of the protons with respect to the spaceship, what 
speed will Frank measure for the protons?



• Frank (in the fixed, stationary system K on the space station) will 
measure the velocity of the protons to be 𝒖, whereas Mary, the 
commander of the spaceship (the moving system 𝐾′), will measure 
𝑢′ = 0.99c. 

• The velocity of the spaceship with respect to the space station is 

𝑣 = 0.60c. 

• Newtonian mechanics teaches us that to find the velocity of the 
protons with respect to the space station, we simply add the velocity of 
the spaceship with respect to the space station (0.60c) to the velocity 
of the protons with respect to the spaceship (0.99c) to determine the 
result 𝒖 = 𝒗 + 𝒖′ = 𝟎. 𝟔𝟎 𝒄 + 𝟎. 𝟗𝟗 𝒄 = 𝟏. 𝟓𝟗 𝒄

• However, this result is not in agreement with the results of the Lorentz 
transformation.



• Taking the differentials of 𝑥 :

• Velocities are defined by

These equations are referred to as the 
Lorentz velocity transformations.



Addition of Velocities
• Although the relative motion of the systems K and K’ is only along the x direction, the velocities along

y and z are affected as well.

• This contrasts with the Lorentz transformation equations, where y = y’ and z = z’.

• The difference in velocities is simply ascribed to the transformation of time, which depends on 𝑣 and
𝑥’.

• Thus, the transformations for 𝑢𝑦 and 𝑢𝑧 depend on 𝑣 and 𝑢’𝑥.

• The inverse transformations for 𝑢’𝑥 , 𝑢’𝑦, and 𝑢’𝑧 can be determined by simply switching primed and
unprimed variables and changing 𝒗 to −𝒗.



Addition of Velocities

• What is the correct result for the speed of the protons with respect to the space station?

• We have 𝑢’𝑥 = 0.99𝑐 and 𝑣 = 0.60𝑐, so this gives us the result

where we have assumed we know the speeds to three significant figures.

• Therefore, the result is a speed only slightly less than c.

• The Lorentz transformation does not allow a material object to have a speed greater than c.

• Only massless particles, such as light, can have speed c.

• If the crew members of the spaceship spot the asteroids far enough in advance, their reaction
times should allow them to shoot down the uncharacteristically swiftly moving asteroids and save
both the spaceship and the space station.

𝑢𝑥 =
0.990𝑐 + 0.600𝑐

1 +
(0.600𝑐)(0.990𝑐)

𝑐2

= 0.997𝑐



Addition of Velocities
• Although no particle with mass can carry energy faster than c, we can imagine a signal being

processed faster than c.
• Consider the following gedanken experiment.
• A giant floodlight placed on a space station above the Earth revolves at 100 Hz.
• Light spreads out in the radial direction from the floodlight at speeds of c.
• On the surface of the moon, the light beam sweeps across at speeds far exceeding c.
• However, the light itself does not reach the moon at speeds faster than c.
• No energy is associated with the beam of light sweeping across the moon’s surface.
• The energy (and linear momentum) is only along the radial direction from the space station to the

moon.

A floodlight revolving at high speeds can sweep a 
light beam across the surface of the moon at 
speeds exceeding c, but the speed of the light still
does not exceed c.



Experimental Verification
• We have used the special theory of relativity to describe some

unusual phenomena.

• The special theory has also been used to make some predictions
concerning length contraction, time dilation, and velocity addition.

• Now we will discuss only a few of the many experiments that have
been done to confirm the special theory of relativity.



Muon Decay
• When high-energy particles called cosmic rays enter the Earth’s

atmosphere from outer space, they interact with particles in the
upper atmosphere, creating additional particles in a cosmic shower.

• Many of the particles in the shower are p-mesons (pions), which
decay into other unstable particles called muons.

• Because muons are unstable, they decay according to the radioactive
decay law

where 𝑁0 and 𝑁 are the number of muons at times 𝑡 = 0 𝑎𝑛𝑑 𝑡 = 𝑡, 
respectively, and 𝑡1/2 is the half-life of the muons.



Muon Decay
• This means that in the time period 𝒕𝟏/𝟐 half of the muons will

decay to other particles.

• The half-life of muons (1.52x106 s) is long enough that many of
them survive the trip through the atmosphere to the Earth’s
surface.

• Much of what we know about muons in cosmic rays was
learned from balloon flights carrying sophisticated detectors.

• This balloon is being prepared for launch in NASA’s Ultra Long
Duration Balloon program for a mission that may last up to 100
days.

• The payload will hang many meters below the balloon.

• Victor Hess began the first such balloon flights in 1912 (when
he discovered cosmic rays), and much improved versions are
still launched today from all over the world to study cosmic
rays, the atmosphere, the sun, and the universe.



Muon Decay
• We perform an experiment by placing a muon detector on top of a mountain

2000 m high and counting the number of muons traveling at a speed near
𝒗 = 𝟎. 𝟗𝟖𝒄.

• Suppose we count 103 muons during a given time period 𝒕𝟎.

• We then move our muon detector to sea level, and we determine
experimentally that approximately 540 muons survive the trip without
decaying.

• Classically, muons traveling at a speed of 𝟎. 𝟗𝟖𝒄 cover the 2000-m path in
6.8x106 s, and according to the radioactive decay law, only 45 muons should
survive the trip.

• There is obviously something wrong with the classical calculation, because
we counted a factor of 12 more muons surviving than the classical
calculation predicts.



Muon Decay



Muon Decay
• Because the classical calculation does not agree with the experimental result,

we should consider a relativistic calculation.

• The muons are moving at a speed of 𝟎. 𝟗𝟖𝒄 with respect to us on Earth, so the
effects of time dilation will be dramatic.

• In the muon rest frame, the time period for the muons to travel 2000 m (on a
clock fixed with respect to the mountain) is calculated to be (𝟔. 𝟖/𝟓. 𝟎) 𝒙 𝟏𝟎𝟔 𝒔,
because 𝜸 = 𝟓. 𝟎 for 𝒗 = 𝟎. 𝟗𝟖𝒄.

• For the time 𝒕 = 𝟏. 𝟑𝟔 𝒙 𝟏𝟎𝟔 𝒔, the radioactive decay law predicts that 538
muons will survive the trip, in agreement with the observations.



Muon Decay

• It is useful to examine the muon decay problem from the perspective of an observer 
traveling with the muon. 

• This observer would not measure the distance from the top of the mountain to sea 
level to be 2000 m. 

• Rather, this observer would say that the distance is contracted and is only 
(2000 𝑚)/5.0 = 𝟒𝟎𝟎𝒎.

• The time to travel the 400-m distance would be 
400𝑚

0.98𝑐
= 1.36 𝑥 106 𝑠 according to a 

clock at rest with a muon. 

• Using the radioactive decay law, an observer traveling with the muons would still 
predict 538 muons to survive. 

• Therefore, we obtain the identical result whether we consider time dilation or space 
contraction, and both are in agreement with the experiment, thus confirming the 
special theory of relativity.



Atomic Clock Measurement

• In an atomic clock, an extremely accurate measurement of
time is made using a well-defined transition in the
𝟏𝟑𝟑𝑪𝒔 𝒂𝒕𝒐𝒎 (f = 9,192,631,770 Hz).

• In 1971 two American physicists, J. C. Hafele and Richard E.
Keating, used four cesium beam atomic clocks to test the
time dilation effect.

• They flew the four portable cesium clocks eastward and
westward on regularly scheduled commercial jet airplanes
around the world and compared the time with a reference
atomic time scale at rest at the U.S. Naval Observatory in
Washington, D.C.





Atomic Clock Measurement
• The trip eastward took 65.4 hours with 41.2 flight hours, whereas the westward 

trip, taken a week later, took 80.3 hours with 48.6 flight hours. 

• The comparison with the special theory of relativity is complicated by the 
rotation of the Earth and by a gravitational effect arising from the general 
theory of relativity. 

• The actual relativistic predictions and experimental observations for the time 
differences are



Atomic Clock Measurement

• A negative time indicates that the time on the moving clock is less 
than the reference clock. 

• The moving clocks lost time (ran slower) during the eastward trip,
but gained time (ran faster) during the westward trip. 

• This occurs because of the rotation of the Earth, indicating that the 
flying clocks ticked faster or slower than the reference clocks on 
Earth. 

• The special theory of relativity is verified within the experimental
uncertainties.



Velocity Addition
• An interesting test of the velocity addition relations was made by T. Alväger and

colleagues at the CERN nuclear and particle physics research facility on the
border of Switzerland and France.

• They used a beam of almost 𝟐𝟎 − 𝑮𝒆𝑽 (𝟐𝟎 𝒙 𝟏𝟎𝟗 𝒆𝑽) 𝒑𝒓𝒐𝒕𝒐𝒏𝒔 to strike a target
to produce neutral pions (𝜋0) having energies of more than 6 𝐺𝑒𝑉.

• The 𝜋0 (𝛽 ≈ 0.99975) have a very short half-life and soon decay into two γ
rays.

• In the rest frame of the π0 the two 𝛾 𝑟𝑎𝑦𝑠 go off in opposite directions.

• The experimenters measured the velocity of the γ rays going in the forward
direction in the laboratory.



Velocity Addition
• The Galilean addition of velocities would require the velocity of the γ rays to
be 𝒖 = 𝟎. 𝟗𝟗𝟗𝟕𝟓𝒄 + 𝒄 = 𝟏. 𝟗𝟗𝟗𝟕𝟓𝒄, because the velocity of 𝛾 𝑟𝑎𝑦𝑠 is already
c.

• However, the relativistic velocity addition, in which 𝒗 = 𝟎. 𝟗𝟗𝟗𝟕𝟓𝒄 is the velocity
of the π0 rest frame with respect to the laboratory and 𝑢’ = 𝑐 is the velocity of the
𝛾 𝑟𝑎𝑦𝑠 in the rest frame of the π0, predicts the velocity 𝒖 of the 𝜸 𝒓𝒂𝒚𝒔 measured
in the laboratory to be

• The experimental measurement was accomplished by measuring the time taken for
the 𝛾 𝑟𝑎𝑦𝑠 to travel between two detectors placed about 30 m apart and was in
excellent agreement with the relativistic prediction, but not the Galilean one.

• We again have conclusive evidence of the need for the special theory of relativity.



Testing Lorentz Symmetry
• Although we have mentioned only three rather interesting experiments, physicists

performing experiments with nuclear and particle accelerators have examined
thousands of cases that verify the correctness of the concepts discussed here.

• Quantum electrodynamics (QED) includes special relativity in its framework, and
QED has been tested to one part in 1012.

• Lorentz symmetry requires the laws of physics to be the same for all observers,
and Lorentz symmetry is important at the very foundation of our description of
fundamental particles and forces.

• Lorentz symmetry, together with the principles of quantum mechanics that are
discussed in much of the remainder of this book, form the framework of relativistic
quantum field theory.

• In just the past two decades, physicists have conceived and performed many
experiments that test Lorentz symmetry, but no violations have been discovered to
date.



Twin Paradox

• One of the most interesting topics in relativity is the twin (or clock) paradox.

• Almost from the time of publication of Einstein’s famous paper in 1905, this subject has
received considerable attention, and many variations exist.

• Suppose twins, Mary and Frank, choose different career paths.

• Mary (the Moving twin) becomes an astronaut and Frank (the Fixed twin) a stock broker.

• At age 30, Mary sets out on a spaceship to study a star system 8 ly from Earth.

• Mary travels at very high speeds to reach the star and returns during her life span.

• According to Frank’s understanding of special relativity, Mary’s biological clock ticks
more slowly than his own, so he claims that Mary will return from her trip younger than
he.





Twin Paradox
• Mary returns from her space journey as the younger twin.

• According to Frank, Mary’s spaceship takes off from Earth and quickly reaches its
travel speed of 𝟎. 𝟖𝒄.

• She travels the distance of 8 ly to the star system, slows down and turns around
quickly, and returns to Earth at the same speed.

• The accelerations (positive and negative) take negligible times compared to the
travel times between Earth and the star system.

• According to Frank, Mary’s travel time to the star is 10 years [(8 ly)/0.8c = 10 y]
and the return is also 10 years, for a total travel time of 20 years, so that Frank
will be 30 + 10 + 10 y = 50 years old when Mary returns.

• However, because Mary’s clock is ticking more slowly, her travel time to the star is
only 10 1 − 0.82𝑦 = 6 years. Frank calculates that Mary will only be 30 + 6 + 6
y = 42 years old when she returns with respect to his own clock at rest.



Twin Paradox
• The important fact here is that Frank’s clock is in an inertial system during the entire trip; however,
Mary’s clock is not.

• As long as Mary is traveling at constant speed away from Frank, both of them can argue that the other
twin is aging less rapidly.

• However, when Mary slows down to turn around, she leaves her original inertial system and
eventually returns in a completely different inertial system.

• Mary’s claim is no longer valid, because she does not remain in the same inertial system.

• There is also no doubt as to who is in the inertial system.

• Frank feels no acceleration during Mary’s entire trip, but Mary will definitely feel acceleration during
her reversal time, just as we do when we step hard on the brakes of a car.

• The acceleration at the beginning and the deceleration at the end of her trip present little problem,
because the fixed and moving clocks could be compared if Mary were just passing by Frank each way.

• It is Mary’s acceleration at the star system that is the key.

• A careful analysis of Mary’s entire trip using special relativity, including acceleration, will be in
agreement with Frank’s assessment that Mary is younger.



Twin Paradox
• Table analyzes the twin paradox.

• Both Mary and Frank send out signals at a
frequency f (as measured by their own
clock).

• We include in the table the various journey
timemarks and signals received during the
trip, with one column for the twin Frank
who stayed at home and one for the
astronaut twin Mary who went on the trip.

• Let the total time of the trip as measured
on Earth be 𝑻.

• The speed of Mary’s spaceship is 𝒗 (as
measured on Earth), which gives a
relativistic 𝑓𝑎𝑐𝑡𝑜𝑟 𝛾.

• The distance Mary’s spaceship goes before
turning around (as measured on Earth) is 𝑳.



Spacetime
• When describing events in relativity, it is sometimes

convenient to represent events on a spacetime diagram.

• For convenience we use only one spatial coordinate 𝑥 and
specify position in this one dimension.

• We use 𝑐𝑡 instead of time so that both coordinates will have
dimensions of length.

• Spacetime diagrams were first used by H. Minkowski in 1908
and are often called Minkowski diagrams.

• We have learned in relativity that we must denote both
space and time to specify an event.

• This is the origin of the term fourth dimension for time.

• The events for 𝐴 and 𝐵 in Figure are denoted by the
respective coordinates (𝑥𝐴, 𝑐𝑡𝐴) 𝑎𝑛𝑑 (𝑥𝐵, 𝑐𝑡𝐵), respectively.

• The line connecting events A and B is the path from A to B
and is called a worldline.

• A spacetime diagram is used to specify events.
• The worldline denoting the path from event A to 

event B is shown.



Spacetime

• A spaceship launched from 𝑥 = 0, 𝑐𝑡 = 0 with 
constant velocity 𝒗 has the worldline shown in Figure 
: a straight line with slope c/v. 

• For example, a light signal sent out from the origin
with speed 𝒄 is represented on a spacetime graph 
with a worldline that has a slope 𝑐/𝑐 = 1, so that 
line makes an angle of 45° with both the 𝑥 and 𝑐𝑡
axes. 

• Any real motion in the spacetime diagram cannot 
have a slope of less than 1 because that motion 
would have a speed greater than c.

• The Lorentz transformation does not allow such a 
speed.

• A light signal has the slope of 45° on a 
spacetime diagram.

• A spaceship moving along the x axis with 
speed v is a straight line on the spacetime
diagram with a slope c/v.



Spacetime
• Consider two events that occur at the same time (𝑐𝑡 = 0) but at

different positions, x1 and x2.

• We denote the events (x, ct) as (x1, 0) and (x2, 0), and we show them
in Figure in an inertial system with an origin fixed at 𝑥 = 0 and
𝑐𝑡 = 0.

• We must first devise a method that will allow us to determine
experimentally that the events occurred simultaneously.

• Let us place clocks at positions x1 and x2 and place a flashbulb at
position x3 halfway between x1 and x2.

• The two clocks have been previously synchronized and keep identical
time.

• At time t = 0, the flashbulb explodes and sends out light signals from
position x3.

• The light signals proceed along their worldlines as shown in Figure.

• The two light signals arrive at positions x1 and x2 at identical times t as
shown on the spacetime diagram.

• By using such techniques we can be sure that events occur
simultaneously in our inertial reference system.

• Clocks positioned at x1 and x2 can be 
synchronized by sending a light 
signal from a position x3 halfway 
between. 

• The light signals intercept the 
worldlines of x1 and x2 at the same 
time t.



Spacetime
• But what about other inertial reference systems?

• We realize that the two events will not be simultaneous in a
reference system K’ moving at speed v with respect to our (x, ct)
system.

• Because the two events have different spatial coordinates, x1 and
x2, the Lorentz transformation will preclude them from occurring at
the same time t’ simultaneously in the moving coordinate systems.

• We can see this by supposing that events 1, 2, and 3 take place on
a spaceship moving with velocity v.

• The worldlines for x1 and x2 are the two slanted lines beginning at
x1 and x2 in Figure.

• However, when the flashbulb goes off, the light signals from x3 still
proceed at 45° in the (x, ct) reference system.

• The light signals intersect the worldlines from positions x1 and x2
at different times, so we do not see the events as being
simultaneous in the moving system.

• Spacetime diagrams can be useful in showing such phenomena.

If the positions x1 ( =x’1) and x2 ( =x’2) 
of the previous figure are on a moving 
system K’ when the flashbulb goes off, 

the times will not appear 
simultaneously in system K, because 

the worldlines for x’1 and x’2 are 
slanted.



Spacetime
• Anything that happened earlier in time than t = 0 is called the past and anything that occurs after t = 0 is

called the future.

• The spacetime diagram in Figure shows both the past and the future.

• Notice that only the events within the shaded area below t = 0 can affect the present.

• Events outside this area cannot affect the present because of the limitation v ≤ c; this region is called
elsewhere.

• Similarly, the present cannot affect any events occurring outside the shaded area above t = 0, again
because of the limitation of the speed of light.

(a)The spacetime diagram can be used to 
show the past, present, and future. Only
causal events are placed inside the shaded 
area. Events outside the shaded area 
below t = 0 cannot affect the present. 
(b) If we add an additional spatial
coordinate y, a space cone can be drawn. 
The present cannot affect event A, but 
event B can.



Spacetime

• If we add another spatial coordinate y to our spacetime coordinates,
we will have a cone as shown in Figure b, which we refer to as the light
cone.

• All causal events related to the present (x = 0, ct = 0) must be within
the light cone.

• In Figure b, anything occurring at present (x = 0, ct = 0) cannot
possibly affect an event at position A; however, the event B can
easily affect event A because A would be within the range of light
signals emanating from B.



Spacetime

• Invariant quantities have the same value in all inertial frames.

• They serve a special role in physics because their values do not change
from one system to another.

• For example, the speed of light c is invariant.

• We are used to defining distances by d2 = x2 + y2 + z2, and in Euclidean
geometry, we obtain the same result for d2 in any inertial frame of
reference.

• If we refer to 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒄𝟐𝒕𝟐 we have similar equations in both
systems K and K’. Let us look more carefully at the quantity s2 defined as

and also

𝑠2 = 𝑥2 − 𝑐𝑡 2

𝑠′2 = 𝑥′2 − 𝑐𝑡′ 2



Spacetime
• If we use the Lorentz transformation for x and t, we find that
𝑠2 = 𝑠′2, so s2 is an invariant quantity. This relationship can be
extended to include the two other spatial coordinates, y and z, so that

• For simplicity, we will sometimes continue to use only the single
spatial coordinate x. If we consider two events, we can determine the
quantity Δs2 where

• between the two events, and we find that it is invariant in any inertial
frame. The quantity s is known as the spacetime interval between
two events.

𝑠2 = 𝑥2 + 𝑦2 + 𝑧2 − (𝑐𝑡)2

∆𝑠2 = ∆𝑥2 − 𝑐2∆𝑡2



• There are three possibilities for the invariant quantity Δs2.

1. Δs2 = 0: In this case Δ𝑥2 = 𝑐2Δ𝑡2, and the two events can be connected only
by a light signal. The events are said to have a lightlike separation.

2. Δs2 > 0: Here we must have Δ𝑥2 > 𝑐2Δ𝑡2, and no signal can travel fast
enough to connect the two events. The events are not causally connected
and are said to have a spacelike separation. In this case we can always find
an inertial frame traveling at a velocity less than 𝒄 in which the two events
can occur simultaneously in time but at different places in space.

3. Δs2 < 0: Here we have Δ𝑥2 < 𝑐2Δ𝑡2, and the two events can be causally
connected. The interval is said to be timelike. In this case we can find an
inertial frame traveling at a velocity less than 𝒄 in which the two events
occur at the same position in space but at different times. The two events
can never occur simultaneously.



Spacetime
• A 3-vector 𝑅 can be defined using Cartesian coordinates x, y, z in threedimensional Euclidean

space.

• Another 3-vector 𝑅’ can be determined in another Cartesian coordinate system using x’, y’, z’ in the
new system.

• So far in introductory physics we have discussed translations and rotations of axes between these
two systems.

• We have learned that there are two geometries in Newtonian spacetime.

• One is the three-dimensional Euclidean geometry in which the space interval is 𝑑𝑙2 = 𝑑𝑥2 +
𝑑𝑦2 + 𝑑𝑧2, and the other is a one-dimensional time interval dt.

• Minkowski pointed out that both space and time by themselves will not suffice under a Lorentz
transformation, and only a union of both will be independent and useful.

• We can form a four-dimensional space or four-vector using the four components x, y, z, ict.

• The Equation becomes

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2

𝑑𝑠′2 = 𝑑𝑥′2 + 𝑑𝑦′2 + 𝑑𝑧′2 − 𝑐2𝑑𝑡′2

𝑑𝑠2 = 𝑑𝑠′2



Spacetime

• We previously noted that ds2 (actually Δs2) can be positive, negative, or zero.

• With the four-vector formalism we only have the spacetime geometry, not separate geometries for
space and time.

• The spacetime distances ds2 = ds’2 are invariant under the Lorentz transformation.

• We will learn how the energy and momentum of a particle are connected.

• Similar to the spacetime four-vector, there is an energy-momentum four-vector, and the invariant
quantity is the mass.

• The four-vector formalism gives us equations that produce form-invariant quantities under
appropriate Lorentz transformations.



Doppler Effect
• You may have already studied the Doppler effect of sound in

introductory physics.

• It causes an increased frequency of sound as a source such as a
train (with whistle blowing) approaches a receiver (our eardrum)
and a decrease in frequency as the source recedes.

• In example you see an ambulance.

• A change in sound frequency also occurs when the source is fixed and the receiver is moving.
• The change in frequency of the sound wave depends on whether the source or receiver is moving.
• On first thought it seems that the Doppler effect in sound violates the principle of relativity, until we realize

that there is in fact a special frame for sound waves.
• Sound waves depend on media such as air, water, or a steel plate to propagate.
• For light, however, there is no such medium.
• It is only relative motion of the source and receiver that is relevant, and we expect some differences

between the relativistic Doppler effect for light waves and the normal Doppler effect for sound.



Doppler Effect
• It is not possible for a source of light to travel faster than light in a vacuum, but it is possible for a

source of sound to travel faster than the speed of sound.

• Consider a source of light (for example, a star) and a receiver (an astronomer) approaching one
another with a relative velocity 𝑣.

• First we consider the receiver fixed in system K and the light source in system K’ moving toward
the receiver with velocity 𝒗.

• The source emits n waves during the time interval T.

• Because the speed of light is always c and the source is moving with velocity v, the total distance
between the front and rear of the wave train emitted during the time interval T is

• Because there are n waves emitted during this time period, the wavelength must be

and the frequency, 𝑓 = 𝑐 /𝜆, is

𝑳𝒆𝒏𝒈𝒉𝒕 𝒐𝒇 𝒘𝒂𝒗𝒆 𝒕𝒓𝒂𝒊𝒏 = 𝒄𝑻 − 𝒗𝑻

𝜆 =
𝑐𝑇 − 𝑣𝑇

𝑛

𝑓 =
𝑐𝑛

𝑐𝑇 − 𝑣𝑇



Doppler Effect

(a) The source (star) is approaching the receiver (astronomer) with velocity 𝑣 while it emits starlight signals 
with speed c. 

(b) Here the source and receiver are receding with velocity 𝑣. The Doppler effect for light is different than 
that for sound, because of relativity and no medium to carry the light waves.



Doppler Effect

• In its rest frame, the source emits n waves of frequency f0 during the proper time T’0.

• The proper time interval T’0 measured on the clock at rest in the moving system is related to the
time interval T measured on a clock fixed by the receiver in system K by

• where γ is the relativistic factor. The clock moving with the source measures the proper time
because it is present with both the beginning and end of the wave.

• The frequency can be determined

𝑛 = 𝑓0𝑇0
′

𝑇0
′ =

𝑇

𝛾



Doppler Effect

• where we have inserted the equation for 𝛾. If we use 𝜷 = 𝒗/𝒄, we can write the previous
equation as

• It is straightforward to show that this Equation is also valid when the source is fixed and the
receiver approaches it with velocity 𝑣.

• It is the relative velocity 𝒗, of course, that is important. But what happens if the source and
receiver are receding from each other with velocity 𝑣 (see Figure b)? The derivation is similar to
the one just done, except that the distance between the beginning and end of the wave train
becomes

• because the source and receiver are receding rather than approaching.

𝑓 =
1 + 𝛽

1 − 𝛽
𝑓0 𝑺𝒐𝒖𝒓𝒄𝒆 𝒂𝒏𝒅 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓 𝒂𝒑𝒑𝒓𝒐𝒂𝒄𝒉𝒊𝒏𝒈

𝑳𝒆𝒏𝒈𝒉𝒕 𝒐𝒇 𝒘𝒂𝒗𝒆 𝒕𝒓𝒂𝒊𝒏 = 𝒄𝑻 + 𝒗𝑻



Doppler Effect
• This change in sign is propagated throughout the derivation with the final result

• These two equations can be combined into one equation if we agree to use a + sign for β (+v/c)
when the source and receiver are approaching each other and a - sign for β (-v/c) when they are
receding.

• The Doppler effect is useful in many areas of science including astronomy, atomic physics, and
nuclear physics.

𝑓 =
1 − 𝛽

1 + 𝛽
𝑓0 𝑺𝒐𝒖𝒓𝒄𝒆 𝒂𝒏𝒅 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓 𝒓𝒆𝒄𝒆𝒅𝒊𝒏𝒈

𝑓 =
1 + 𝛽

1 − 𝛽
𝑓0 𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒊𝒔𝒕𝒊𝒄 𝑫𝒐𝒑𝒑𝒍𝒆𝒓 𝑬𝒇𝒇𝒆𝒄𝒕



Doppler Effect

• Elements absorb and emit characteristic frequencies of light due to the existence of particular
atomic levels.

• Scientists have observed these characteristic frequencies in starlight and have observed shifts in
the frequencies.

• One reason for these shifts is the Doppler effect, and the frequency changes are used to
determine the speed of the emitting object with respect to us.

• This is the source of the redshifts of starlight caused by objects moving away from us.

• These data have been used to ascertain that the universe is expanding.

• The farther away the star, the higher the redshift. This observation is what led Harlow Shapley
and Edwin Hubble to the idea that the universe started with a Big Bang.



Doppler Effect
• We have only considered the source and

receiver to be directly approaching or receding.

• It is also possible for the two to be moving at an
angle with respect to one another, as shown in
Figure.

• The angles θ and θ’ are the angles the light
signals make with the x axes in the K and K’
systems. They are related by

• The generalized Doppler shift equation
becomes

𝑓 cos 𝜃 =
𝑓0 (cos 𝜃

′ + 𝛽)

1 − 𝛽2
𝑎𝑛𝑑 𝑓 sin 𝜃 = 𝑓0 sin 𝜃

′

The light signals in system K’ are
emitted at an angle θ’ from the x’ axis 

and remain in the x’y’ plane.

𝑓 =
1 + 𝛽 cos 𝜃′

1 − 𝛽2
𝑓0



Doppler Effect

• Note that when θ’ = 0° (source and receiver approaching) and when θ’ = 180° (source and
receiver receding). This situation is known as the longitudinal Doppler effect.

• When θ’ = 90° the emission is purely transverse to the direction of motion, and we have the
transverse Doppler effect, which is purely a relativistic effect that does not occur classically.

• The transverse Doppler effect is directly due to time dilation and has been verified
experimentally.



Applications of the Doppler Effect

• Astronomy : Perhaps the best-known application is in astronomy, where the Doppler shifts of known atomic
transition frequencies determine the relative velocities of astronomical objects with respect to us. Such
measurements continue to be used today to find the distances of such unusual objects as quasars (objects
having incredibly large masses that produce tremendous amounts of radiation; see Chapter 16). The Doppler
effect has been used to discover other effects in astronomy, for example, the rate of rotation of Venus and
the fact that Venus rotates in the opposite direction of Earth—the sun rises in the west on Venus. This was
determined by observing light reflected from both sides of Venus—on one side it is blueshifted and on the
other side it is redshifted, as shown in Figure A. The same technique has been used to determine the rate of
rotation of stars.



Applications of the Doppler Effect

• Radar : The Doppler effect is nowhere more important than it is in radar. When an electromagnetic radar
signal reflects off of a moving target, the so-called echo signal will be shifted in frequency by the Doppler
effect. Very small frequency shifts can be determined by examining the beat frequency of the echo signal
with a reference signal. The frequency shift is proportional to the radial component of the target’s velocity.
Navigation radar is quite complex, and ingenious techniques have been devised to determine the target
position and velocity using multiple radar beams. By using pulsed Doppler radar it is possible to separate
moving targets from stationary targets, called clutter.

• Doppler radar is also extensively used in meteorology. Vertical motion of airdrafts, sizes and motion of
raindrops, motion of thunderstorms, and detailed patterns of wind distribution have all been studied with
Doppler radar.

• X rays and gamma rays emitted from moving atoms and nuclei have their frequencies shifted by the Doppler
effect. Such phenomena tend to broaden radiation frequencies emitted by stationary atoms and nuclei and
add to the natural spectral widths observed.



Applications of the Doppler Effect
• Laser Cooling : In order to perform fundamental measurements in atomic physics, it is useful to limit the effects of thermal

motion and to isolate single atoms. A method taking advantage of the Doppler effect can slow down even neutral atoms
and eventually isolate them. Atoms emitted from a hot oven will have a spread of velocities. If these atoms form a beam
as shown in Figure B, a laser beam impinging on the atoms from the right can slow them down by transferring momentum.

• Atoms have characteristic energy levels that allow them to absorb and emit radiation of specific frequencies. Atoms
moving with respect to the laser beam will “see” a shift in the laser frequency because of the Doppler effect. For example,
atoms moving toward the laser beam will encounter light with high frequency, and atoms moving away from the laser
beam will encounter light with low frequency. Even atoms moving in the same direction within the beam of atoms will see
slightly different frequencies depending on the velocities of the various atoms. Now, if the frequency of the laser beam is
tuned to the precise frequency seen by the faster atoms so that those atoms can be excited by absorbing the radiation,
then those faster atoms will be slowed down by absorbing the momentum of the laser radiation. The slower atoms will
“see” a laser beam that has been Doppler shifted to a lower frequency than is needed to absorb the radiation, and these
atoms are not as likely to absorb the laser radiation. The net effect is that the atoms as a whole are slowed down and their
velocity spread is reduced.



Applications of the Doppler Effect

• As the atoms slow down, they see that the Dopplershifted frequencies of the laser change, and
the atoms no longer absorb the laser radiation. They continue with the same lower velocity and
velocity spread. The lower temperature limits reached by Doppler cooling depend on the atom,
but typical values are on the order of hundreds of microkelvins. Doppler cooling is normally
accompanied by intersecting laser beams at different angles; an “optical molasses” can be
created in which atoms are essentially trapped. Further cooling is obtained by other techniques
including “Sisyphus” and evaporative cooling, among others. In a remarkable series of
experiments by various researchers, atoms have been cooled to temperatures approaching 10-10

K. The 1997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-Tannoudji, and
William Phillips for these techniques. An important use of laser cooling is for atomic clocks. See
http://www.nist.gov/physlab/div847/grp50/primary-frequency-standards.cfm for a good
discussion. See also Steven Chu, “Laser Trapping of Neutral Particles,” Scientific American 266, 70
(February 1992). In Chapter 9 we will discuss how laser cooling is used to produce an ultracold
state of matter known as a Bose-Einstein condensate.

http://www.nist.gov/physlab/div847/grp50/primary-frequency-standards.cfm

