Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model


Schwerdt H. N., Zhang E., Kim M. J., Yoshida T., Stanwicks L., Amemori S., ...Daha Fazla

COMMUNICATIONS BIOLOGY, cilt.1, 2018 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1038/s42003-018-0147-y
  • Dergi Adı: COMMUNICATIONS BIOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • İstanbul Üniversitesi Adresli: Hayır

Özet

Chemical signaling underlies both temporally phasic and extended activity in the brain. Phasic activity can be monitored by implanted sensors, but chronic recording of such chemical signals has been difficult because the capacity to measure them degrades over time. This degradation has been attributed to tissue damage progressively produced by the sensors and failure of the sensors themselves. We report methods that surmount these problems through the development of sensors having diameters as small as individual neuronal cell bodies (<10 mu m). These micro-invasive probes (mu IPs) markedly reduced expression of detectable markers of inflammation and tissue damage in a rodent test model. The chronically implanted mu IPs provided stable operation in monitoring sub-second fluctuations in stimulation-evoked dopamine in anesthetized rats for over a year. These findings demonstrate that monitoring of chemical activity patterns in the brain over at least year-long periods, long a goal of both basic and clinical neuroscience, is achievable.