Scenarios of tsunami amplitudes in the north eastern coast of Sea of Marmara generated by submarine mass failure


Hayır A., Seseogullari B., Kilinc I., Erturk A., Cigizoglu H. K., Kabdaşlı M. S., ...Daha Fazla

COASTAL ENGINEERING, cilt.55, sa.5, ss.333-356, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 5
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1016/j.coastaleng.2007.12.001
  • Dergi Adı: COASTAL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.333-356
  • İstanbul Üniversitesi Adresli: Evet

Özet

In this paper the tsunamis resulting from a submarine mass failure such as slides and slumps triggered by earthquakes or other environmental effects, which is settled at the bottom of the north eastern Sea of Marmara are examined in one sample region. As the solution method, one hybrid method is developed. The main objective of this method is to combine an analytical solution presenting near-field tsunami amplitudes above the submarine mass failure with a numerical solution indicating the tsunami amplitudes in the coastal regions. For this purpose, one common linear boundary between analytical and numerical solution domains is defined. Movements of Submarine Mass Failures (SMF) are modeled using one simple kinematics source model and the amplitudes of the tsunamis at the region that are closer to the landslide are computed by using the analytical method. SMF is modeled approximately from the bottom geometry, and an average depth is used. Scenarios of SMF are established depending on the velocities and thicknesses of the failure, and near-field tsunami amplitudes are obtained in the open sea during the source time. After the source times, the solutions are found in the numerical region using TELEMAC-2D software system with the mentioned boundary above. In this boundary, the output of the analytical solutions is taken as the boundary conditions or the disturbances for the numerical method. With these disturbances, the numerical method is performed and the amplitudes are calculated in the coastal area. The generation, propagation and coastal amplifications of the tsunamis are illustrated at some certain points and regions both in the open sea and near the coast line. The results have been visualized and discussed. (C) 2007 Elsevier B.V. All rights reserved.