COMPLEX ANALYSIS AND OPERATOR THEORY, cilt.20, sa.1, 2025 (SCI-Expanded, Scopus)
Let G be a locally compact group, Phi 1,Phi 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _1, \Phi _2$$\end{document} be Young functions and nu,omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu , \omega $$\end{document} be moderate weight functions on G. In this paper, we investigate inclusion relations between the Orlicz amalgam spaces W(L nu Phi 1(G),L omega Phi 2(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(L_{\nu }<^>{\Phi _1} (G), L_{\omega }<^>{\Phi _2} (G))$$\end{document} with respect to Young functions, weights where the local and global components are the weighted Orlicz spaces L nu Phi 1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\nu }<^>{\Phi _1}(G)$$\end{document} and L omega Phi 2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\omega }<^>{\Phi _2}(G)$$\end{document}, respectively. We also compare Orlicz amalgam spaces when G is a compact and discrete group. Our study generalizes and unifies the results that have been obtained for the Lebesgue spaces and the weighted Lebesgue spaces.