Rapid spin changes around a magnetar fast radio burst


Creative Commons License

Hu C., Narita T., Enoto T., Younes G., Wadiasingh Z., Baring M. G., ...Daha Fazla

Nature, cilt.626, sa.7999, ss.500-504, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 626 Sayı: 7999
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41586-023-07012-5
  • Dergi Adı: Nature
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, International Bibliography of Social Sciences, Aerospace Database, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Art Source, Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, EBSCO Education Source, Environment Index, Food Science & Technology Abstracts, Gender Studies Database, Geobase, INSPEC, MEDLINE, Metadex, MLA - Modern Language Association Database, Pollution Abstracts, Psycinfo, Public Affairs Index, Veterinary Science Database, zbMATH, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.500-504
  • İstanbul Üniversitesi Adresli: Evet

Özet

Magnetars are neutron stars with extremely high magnetic fields (≳1014 gauss) that exhibit various X-ray phenomena such as sporadic subsecond bursts, long-term persistent flux enhancements and variable rotation-period derivative1,2. In 2020, a fast radio burst (FRB), akin to cosmological millisecond-duration radio bursts, was detected from the Galactic magnetar SGR 1935+2154 (refs. 3–5), confirming the long-suspected association between some FRBs and magnetars. However, the mechanism for FRB generation in magnetars remains unclear. Here we report the X-ray observation of two glitches in SGR 1935+2154 within a time interval of approximately nine hours, bracketing an FRB that occurred on 14 October 20226,7. Each glitch involved a significant increase in the magnetar’s spin frequency, being among the largest abrupt changes in neutron-star rotation8–10 observed so far. Between the glitches, the magnetar exhibited a rapid spin-down phase, accompanied by an increase and subsequent decline in its persistent X-ray emission and burst rate. We postulate that a strong, ephemeral, magnetospheric wind11 provides the torque that rapidly slows the star’s rotation. The trigger for the first glitch couples the star’s crust to its magnetosphere, enhances the various X-ray signals and spawns the wind that alters magnetospheric conditions that might produce the FRB.