NEURAL PLASTICITY, cilt.2022, 2022 (SCI-Expanded)
Objective. The aim of our study is to examine the effects of neonatal tactile stimulations on the brain structures that previously defined as the focus of epilepsy in the Wistar-Albino-Glaxo from Rijswijk (WAG/Rij) rat brain with genetic absence epilepsy. Methods. In the present research, morphology and density of dendritic spines were analyzed in layer V pyramidal neurons of the somatosensory cortex (SoCx) of WAG/Rij rats (nonstimulated control, tactile-stimulated, and maternal separated rats) and healthy Wistar (nonepileptic) rats. To achieve this, a Golgi-Cox method was used. Results. Dendritic spine number in layer V of the SoCx has been detected significantly higher in adult WAG/Rij rats at postnatal day 150 in comparison to nonepileptic adult control Wistar rats (p < 0.001). Moreover, quantitative analyses of dendrite structure in adult WAG/Rij rats showed a decrease in dendrite spine density of pyramidal neurons of SoCx which occurred in early neonatal exposure to maternal separation (MS) and tactile stimulation (TS) (p < 0.001). Conclusions. Our findings provide the first evidence that tactile stimulations during the early postnatal period have a long-term impact on dendrite structure in WAG/Rij rat's brain and demonstrate that neonatal tactile stimulation can regulate dendritic spines in layer V in pyramidal neurons of SoCx in epileptic brains.