Classification of ideal submanifolds of real space forms with type number <= 2


Chen B., Yildirim H.

JOURNAL OF GEOMETRY AND PHYSICS, cilt.92, ss.167-180, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 92
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.geomphys.2015.02.015
  • Dergi Adı: JOURNAL OF GEOMETRY AND PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.167-180
  • Anahtar Kelimeler: Ideal submanifold, Optimal inequalities, delta-invariants, SATISFYING CHENS EQUALITY, INEQUALITIES
  • İstanbul Üniversitesi Adresli: Evet

Özet

Roughly speaking, an ideal immersion of a Riemannian manifold into a real space form is an isometric immersion which produces the least possible amount of tension from the ambient space at each point of the submanifold. The main purpose of this paper is to completely classify all non-minimal ideal submanifolds of real space forms with type number <= 2. (C) 2015 Elsevier B.V. All rights reserved.