Synthesis and characterization of green phenolic resin with olive oil mill wastewater

Creative Commons License

Ozbay G., AYRILMIŞ N., Ahmad M. S.

ENVIRONMENTAL SCIENCES EUROPE, vol.35, no.1, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 35 Issue: 1
  • Publication Date: 2023
  • Doi Number: 10.1186/s12302-023-00719-2
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Environment Index, Geobase, Pollution Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Istanbul University Affiliated: Yes


Olive oil mill wastewater (OMW), a by-product of the olive oil industry, each year is generated millions of tons all over Mediterranean countries. Uncontrolled disposal of the OMW leads to massive environmental problems including soil and water pollution. In this experimental study, the OMW was used to partly replace clean water for getting prepared formaldehyde solution. Then, phenol and formaldehyde solutions were synthesized under alkali conditions to obtain more green phenol-formaldehyde (PF) resin. The effect of the OMW substitution level on the chemical and thermal properties of PF resin was examined by the Fourier transform infrared (FT-IR) spectral and thermogravimetric (TGA) analysis, respectively. Moreover, the bonding strength of each PF resin was evaluated under dry and wet conditions. It was found that FT-IR measurements showed that the PF resin containing various amounts of the OMW had a chemical structure very similar to the PF resin. The thermogravimetric analysis demonstrated that the low-molecular-weight organics in the OMW had negatively affected the thermal stability of the modified PF resins. In addition, the wood samples bonded with the PF resin containing up to 30 wt% OMW met the minimum requirements of interior and exterior bonding performance according to standard EN 12765. The OMW could be replaced by clean water up to 30 wt% for the production of green phenolic resin.