Application of Graph-Theoretic Methods Using ERP Components and Wavelet Coherence on Emotional and Cognitive EEG Data


Deniz S. M., Ademoglu A., DURU A. D., DEMİRALP T.

Brain Sciences, cilt.15, sa.7, 2025 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 7
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/brainsci15070714
  • Dergi Adı: Brain Sciences
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, Directory of Open Access Journals
  • Anahtar Kelimeler: brain–computer interface, classification, cognition, EEG, emotion, event-related potentials, wavelet coherence
  • İstanbul Üniversitesi Adresli: Evet

Özet

Background/Objectives: Emotion and cognition, two essential components of human mental processes, have traditionally been studied independently. The exploration of emotion and cognition is fundamental for gaining an understanding of human mental functioning. Despite the availability of various methods to measure and evaluate emotional states and cognitive processes, physiological measurements are considered to be one of the most reliable methods due to their objective approach. In particular, electroencephalography (EEG) provides unique insight into emotional and cognitive activity through the analysis of event-related potentials (ERPs). In this study, we discriminated pleasant/unpleasant emotional moods and low/high cognitive states using graph-theoretic features extracted from spatio-temporal components. Methods: Emotional data were collected at the Physiology Department of Istanbul Medical Faculty at Istanbul University, whereas cognitive data were obtained from the DepositOnce repository of Technische Universität Berlin. Wavelet coherence values for the N100, N200, and P300 single-trial ERP components in the delta, theta, alpha, and beta frequency bands were investigated individually. Then, graph-theoretic analyses were performed using wavelet coherence-based connectivity maps. Global and local graph metrics such as energy efficiency, strength, transitivity, characteristic path length, and clustering coefficient were used as features for classification using support vector machines (SVMs), k-nearest neighbor(K-NN), and linear discriminant analysis (LDA). Results: The results show that both pleasant/unpleasant emotional moods and low/high cognitive states can be discriminated, with average accuracies of up to 92% and 89%, respectively. Conclusions: Graph-theoretic metrics based on wavelet coherence of ERP components in the delta band with the SVM algorithm allow for the discrimination of emotional and cognitive states with high accuracy.