Equimolar Polyampholyte Hydrogel Synthesis Strategies with Adaptable Properties


Creative Commons License

Toleutay G., SU E., Yelemessova G.

Polymers, cilt.15, sa.14, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 14
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/polym15143131
  • Dergi Adı: Polymers
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, Compendex, Food Science & Technology Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: electrostatic interactions, H-bonds, mechanical properties, polyampholytes
  • İstanbul Üniversitesi Adresli: Evet

Özet

Polyampholyte hydrogels exhibit great antibacterial and antifouling properties, which make them attractive for biomedical applications, such as drug delivery, wound healing, and tissue engineering. They also have potential applications in food safety, wastewater treatment, and desalination. Since they are based on ionic interactions, polyampholytes are known to require lower amounts of chemical cross-linkers as compared with traditional gels. However, the effects of both chemical and physical interactions on the material’s performance are yet to be fully understood and were examined in the present work. Here, four series of equimolar polyampholyte hydrogels were synthesized with anionic (acrylamidomethylpropane sulfonic acid sodium salt) and cationic monomers (acrylamidopropyl-trimethylammonium chloride) along with a cross-linker (N,N′-methylenebisacrylamide). The mechanical and rheological properties of the gels were characterized following changes to the initial monomer concentration and crosslinker ratios, which led to gels with different toughness, stretchability, and compressibility. The direct correlation of the cross-linking degree with the initial monomer concentration showed that the chemical crosslinker could be further reduced at a high monomer concentration of 30% by weight, which creates an inter-chain network at a minimal crosslinker concentration of 0.25%. Lastly, N′N-dimethylacrylamide was added, which resulted in an increase in the number of H-bonds in the structure, noticeably raising material performance.