Optimization of loop-mediated isothermal amplification assay for sunflower mildew disease detection


Yeni O., Şen M., Hasançebi S., Turgut Kara N.

Scientific Reports, cilt.14, sa.1, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1038/s41598-024-72228-y
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Loop-mediated isothermal amplification (LAMP), Plant disease detection, Plant pathogens, Plasmopara halstedii, Sunflower downy mildew
  • İstanbul Üniversitesi Adresli: Evet

Özet

Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P. halstedii genomic DNA, targeting the ribosomal Large Subunit (LSU). These primers were verified by in silico analysis and experimental validation using both target and non-target species' DNAs. Optimizations encompassing reaction conditions (temperature, time) and component concentrations (magnesium, Bst DNA polymerase, primers, and dNTP) were determined. Validation of these optimizations was performed by agarose gel electrophoresis. Furthermore, various colorimetric chemicals (Neutral Red, Hydroxynaphthol Blue, SYBR Safe, Thiazole Green) were evaluated to facilitate method analysis, and the real-time analysis has been optimized, presenting multiple approaches for detecting sunflower downy mildew using the LAMP technique. The analytical sensitivity of the method was confirmed by detecting P. halstedii DNA concentrations as low as 0.5 pg/μl. This pioneering study, establishing P. halstedii detection through the LAMP method, stands as unique in its field. The precision, robustness, and practicality of the LAMP protocol make it an ideal choice for studies focusing on sunflower mildew, emphasizing its recommended use due to its operational ease and reliability.