Single and binary adsorption of reactive dyes from aqueous solutions onto clinoptilolite


Sismanoglu T., Kismir Y., Karakus S.

JOURNAL OF HAZARDOUS MATERIALS, cilt.184, ss.164-169, 2010 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 184
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.jhazmat.2010.08.019
  • Dergi Adı: JOURNAL OF HAZARDOUS MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.164-169
  • İstanbul Üniversitesi Adresli: Evet

Özet

The adsorption of Reactive Blue 21 (RB21) and Reactive Red 195 (RR195) onto clinoptilolite type natural zeolite (ZEC) has been investigated at 298.15K. The uptake of single and binary reactive dyes from aqueous solutions has been determined by UV-vis spectroscopy. Two mono-component (RB21 and RR195) and binary component (RB21 with RR195, and RR195 with RB21), isotherms were determined. The mono-component Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for RB21 and RR195 dyes. The monolayer coverage capacities of clinoptilolite for RB21 and RR195 dyes in single solution system were found as 9.652 and 3.186 mg/g, respectively. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto clinoptilolite was described by using two kinetics adsorption models. The pseudo-second-order model was the best choice among the kinetic models to describe the adsorption behaviour of single and binary dyes onto clinoptilolite. (c) 2010 Elsevier B.V. All rights reserved.

The adsorption of Reactive Blue 21 (RB21) and Reactive Red 195 (RR195) onto clinoptilolite type natural zeolite (ZEC) has been investigated at 298.15 K. The uptake of single and binary reactive dyes from aqueous solutions has been determined by UV–vis spectroscopy. Two mono-component (RB21 and RR195) and binary component (RB21 with RR195, and RR195 with RB21), isotherms were determined. The mono-component Langmuir isotherm model was applied to experimental data and the isotherm constants were calculated for RB21 and RR195 dyes. The monolayer coverage capacities of clinoptilolite for RB21 and RR195 dyes in single solution system were found as 9.652 and 3.186 mg/g, respectively. Equilibrium adsorption for binary systems was analyzed by using the extended Langmuir models. The rate of kinetic processes of single and binary dye systems onto clinoptilolite was described by using two kinetics adsorption models. The pseudo-second-order model was the best choice among the kinetic models to describe the adsorption behaviour of single and binary dyes onto clinoptilolite.