Hyperglycemia with or without insulin resistance triggers different structural changes in brain microcirculation and perivascular matrix


Ozkan E., Cetin-Tas Y., Sekerdag E., Yigit B., Shomalizadeh N., Sapanci S., ...Daha Fazla

METABOLIC BRAIN DISEASE, cilt.38, sa.1, ss.307-321, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 38 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s11011-022-01100-7
  • Dergi Adı: METABOLIC BRAIN DISEASE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.307-321
  • Anahtar Kelimeler: Angiogenesis, Collagen, Diabetes mellitus, Elastin, Hyperglycemia, Microcirculation, Obesity, Pericytes, ELASTIN-DERIVED PEPTIDES, CEREBRAL-CORTEX, TYPE-1, RISK, ACTIVATION, DEMENTIA, MODEL, UNIT
  • İstanbul Üniversitesi Adresli: Evet

Özet

Both type-1 and type-2 DM are related to an increased risk of cognitive impairment, neurovascular complications, and dementia. The primary triggers for complications are hyperglycemia and concomitant insulin resistance in type-2 DM. However, the diverse mechanisms in the pathogenesis of diabetes-related neurovascular complications and extracellular matrix (ECM) remodeling in type-1 and 2 have not been elucidated yet. Here, we investigated the high fat-high sucrose (HFHS) feeding model and streptozotocin-induced type-1 DM model to study the early effects of hyperglycemia with or without insulin resistance to demonstrate the brain microcirculatory changes, perivascular ECM alterations in histological sections and 3D-reconstructed cleared brain tissues. One of the main findings of this study was robust rarefaction in brain microvessels in both models. Interestingly, the HFHS model leads to widespread non-functional angiogenesis, but the type-1 DM model predominantly in the rostral brain. Rarefaction was accompanied by basement membrane thickening and perivascular collagen accumulation in type-1 DM; more severe blood-brain barrier leakage, and disruption of perivascular ECM organization, mainly of elastin and collagen fibers' structural integrity in the HFHS model. Our results point out that the downstream mechanisms of the long-term vascular complications of hyperglycemia models are structurally distinctive and may have implications for appropriate treatment options.