Serum indoxyl sulfate concentrations associate with progression of chronic kidney disease in children


Holle J., Kirchner M., Okun J., KARABAY BAYAZIT A., Obrycki L., Canpolat N., ...More

PLOS ONE, vol.15, no.10, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 15 Issue: 10
  • Publication Date: 2020
  • Doi Number: 10.1371/journal.pone.0240446
  • Journal Name: PLOS ONE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Animal Behavior Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, Index Islamicus, Linguistic Bibliography, MEDLINE, Pollution Abstracts, Psycinfo, zbMATH, Directory of Open Access Journals
  • Istanbul University Affiliated: Yes

Abstract

The uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (pCS) accumulate in patients with chronic kidney disease (CKD) as a consequence of altered gut microbiota metabolism and a decline in renal excretion. Despite of solid experimental evidence for nephrotoxic effects, the impact of uremic toxins on the progression of CKD has not been investigated in representative patient cohorts. In this analysis, IS and pCS serum concentrations were measured in 604 pediatric participants (mean eGFR of 27 +/- 11 ml/min/1.73m2) at enrolment into the prospective Cardiovascular Comorbidity in Children with CKD study. Associations with progression of CKD were analyzed by Kaplan-Meier analyses and Cox proportional hazard models. During a median follow up time of 2.2 years (IQR 4.3-0.8 years), the composite renal survival endpoint, defined as 50% loss of eGFR, or eGFR <10ml/min/1.73m2 or start of renal replacement therapy, was reached by 360 patients (60%). Median survival time was shorter in patients with IS and pCS levels in the highest versus lowest quartile for both IS (1.5 years, 95%CI [1.1,2.0] versus 6.0 years, 95%CI [5.0,8.4]) and pCS (1.8 years, 95%CI [1.5,2.8] versus 4.4 years, 95%CI [3.4,6.0]). Multivariable Cox regression disclosed a significant association of IS, but not pCS, with renal survival, which was independent of other risk factors including baseline eGFR, proteinuria and blood pressure. In this exploratory analysis we provide the first data showing a significant association of IS, but not pCS serum concentrations with the progression of CKD in children, independent of other known risk factors. In the absence of comorbidities, which interfere with serum levels of uremic toxins, such as diabetes, obesity and metabolic syndrome, these results highlight the important role of uremic toxins and accentuate the unmet need of effective elimination strategies to lower the uremic toxin burden and abate progression of CKD.