Abundance and characteristics of microplastics in drinking water treatment plants, distribution systems, water from refill kiosks, tap waters and bottled waters

Acarer S.

SCIENCE OF THE TOTAL ENVIRONMENT, vol.884, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Review
  • Volume: 884
  • Publication Date: 2023
  • Doi Number: 10.1016/j.scitotenv.2023.163866
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Istanbul University Affiliated: No


Limited research studies have revealed the presence of microplastics (MPs) of different polymer types, shapes, and sizes in drinking water sources, influents of drinking water treatment plants (DWTPs), effluents of DWTPs, tap water, and bottled water. Reviewing the available information on MP pollution in waters, which is becoming more worrying in correlation with the increasing plastic production in the world every year, is noteworthy for understanding the current situation, identifying the deficiencies in the studies, and taking the necessary measures for public health as soon as possible. Therefore, this paper, in which the abundance, characteristics, and removal efficiencies of MPs in the processes from raw water to tap water and/or bottled water are reviewed is a guide for dealing with MP pollution in drinking water. In this paper, firstly, the sources of MPs in raw waters are briefly reviewed. In addition, the abundance, and characteristics (polymer type, shape, and size) of MPs in influents and effluents of DWTPs in different countries are reviewed and the effects of treatment stages (coagulation, flocculation, sedimentation, sand filtration, disinfection, and membrane filtration) of DWTPs on MP removal efficiency and the factors that are effective in removal are discussed. Moreover, studies on the factors affecting MP release from drinking water distribution systems (DWDSs) to treated water and the abundance and characteristics of MPs in tap water, bottled water and water from refill kiosks are re-viewed. Finally, the deficiencies in the studies dealing with MPs in drinking water are identified and recommendations for future studies are presented.