Kinematics and evolution of the northern branch of the North Anatolian Fault (Ganos Fault) between the Sea of Marmara and the Gulf of Saros

YALTIRAK C., Alpar B. I.

MARINE GEOLOGY, cilt.190, ss.351-366, 2002 (SCI İndekslerine Giren Dergi) identifier identifier


The WSW-ENE-trending Ganos Fault is a dextral strike-slip fault running parallel to and southwest of the West Marmara Trough and south of the Saros Trough. Dextral structures started evolving in the early Miocene, and at this time the Ganos fault system developed from a part of the Thrace-Eskisehir fault system. Beginning in the late Pliocene (similar to 3.5 Ma), the North Anatolian transform fault propagated into the Marmara region and captured the Ganos Fault. Subsequently, this fault has accommodated the westward movement of the Anatolian Block. Because of the curvature of the microplate boundary in this area, the Ganos fault system has tended to rotate counterclockwise. Farther west in the Gulf of Saros, the strike-slip motion was accommodated by a new fault on the northern margin of the gulf, rather than along the northern coast of the Gelibolu Peninsula as previously thought. This interpretation differs from previous assessments of the position of the northern strand of the North Anatolian fault (Marmara segment) in the Marmara Sea and in the Gulf of Saros. The role of the Ganos Fault proposed in this paper is considerably different from that proposed by earlier studies. While the revised orientation of the North Anatolian fault on land is about 7degrees different than specified by previous authors, at sea it is different by similar to 32degrees counterclockwise and similar to 23degrees clockwise in the West Marmara and Saros submarine depressions, respectively. The revised position of the Ganos Fault in the Marmara Sea, derived from shallow and conventional seismic reflection data, calls into question the validity of evolutionary models previously used in kinematic and stress-failure analyses. In particular, it is not possible to regard the Marmara Sea as a pull-apart basin and the Gulf of Saros as a transtensional half-graben. Furthermore, palinspastic maps taking into account the revised position of the Ganos Fault and GPS slip vectors support the idea that a dextral master fault is present to the north of the Saros Trough with a sinistral oblique fault dominated by normal offset (Gelibolu Fault) to its south. The Gelibolu Fault is reactivated in a limited region. (C) 2002 Elsevier Science B.V. All rights reserved.