ISTANBUL MEDICAL JOURNAL, cilt.21, sa.1, ss.7-12, 2020 (ESCI)
Introduction: Philadelphia-negative myeloproliferative neoplasm (MPN) is a hematopoietic stem cell disorder consisting of essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) associated with myeloid cell proliferation without differentiation and maturation defects. It is characterized by hypercellular bone marrow and an increase in one or more cell lines in the peripheral blood. In the hematopoietic stem cell, Janus kinase 2 (JAK2), which is a cytoplasmic tyrosine kinase, remains constantly phosphorylated (active) as a result of the V617F somatic mutation in the pseudokinase region. Even if the phosphorylated JAK2 does not receive a stimulus, it performs signal transmission and causes continuous gene expression. This explains the excessive increase in one or more blood cell lines. NAD(P)H quinone oxidoreductase-1 (NQO1) is a phase 1 enzyme that prevents the formation of reactive and toxic semiquinone metabolites by reducing two electrons in one step. The C609T polymorphism of the NQO1 gene leads to loss of enzyme activity due to the enzyme becoming unstable. While enzyme activity is not observed in individuals with both mutant alleles, moderate activity is observed in heterozygous individuals. Studies have reported a relationship between NQO1 C609T polymorphism and various cancer types. In our study, it was aimed to investigate the possible relationship between NQO1 C609T polymorphism and MPN development.