Evaluation of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Using MR Images and Deep Learning Neural Networks


Cingoz E., Ertas G., Kaval G., Azamat S., Karaman S., Kulle C. B., ...Daha Fazla

Current Medical Imaging, cilt.20, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 20
  • Basım Tarihi: 2024
  • Doi Numarası: 10.2174/0115734056309748240509072222
  • Dergi Adı: Current Medical Imaging
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, EMBASE, MEDLINE
  • Anahtar Kelimeler: Deep learning, Long short-term memory, Magnetic resonance imaging, MR-TRG, Neoadjuvant chemoradiotherapy, Rectal cancer
  • İstanbul Üniversitesi Adresli: Evet

Özet

Introduction: The aim of the study was to develop deep-learning neural networks to guide treatment decisions and for the accurate evaluation of tumor response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer using magnetic resonance (MR) images. Methods: Fifty-nine tumors with stage 2 or 3 rectal cancer that received nCRT were retrospectively evaluated. Pathological tumor regression grading was carried out using the Dworak (Dw-TRG) guidelines and served as the ground truth for response predictions. Imaging-based tumor regression grading was performed according to the MERCURY group guidelines from pre-treatment and post-treatment para-axial T2-weighted MR images (MR-TRG). Tumor signal intensity signatures were extracted by segmenting the tumors volumetrically on the images. Normalized histograms of the signatures were used as input to a deep neural network (DNN) housing long short-term memory (LSTM) units. The output of the network was the tumor regression grading prediction, DNN-TRG. Results: In predicting complete or good response, DNN-TRG demonstrated modest agreement with Dw-TRG (Cohen’s kappa= 0.79) and achieved 84.6% sensitivity, 93.9% specificity, and 89.8% accuracy. MR-TRG revealed 46.2% sensitivity, 100% specificity, and 76.3% accuracy. In predicting a complete response, DNN-TRG showed slight agreement with Dw-TRG (Cohen’s kappa= 0.75) with 71.4% sensitivity, 97.8% specificity, and 91.5% accuracy. MR-TRG provided 42.9% sensitivity, 100% specificity, and 86.4% accuracy. DNN-TRG benefited from higher sensitivity but lower specificity, leading to higher accuracy than MR-TRG in predicting tumor response. Conclusion: The use of deep LSTM neural networks is a promising approach for evaluating the tumor response to nCRT in rectal cancer.