Forests, cilt.16, sa.5, 2025 (SCI-Expanded)
The bending test is a good indicator of wood characterization, including compression, tension, and shear stresses. Therefore, many studies have been published on bending tests for wood. Its heterogeneous structure, anisotropic behavior during the physical and mechanical tests, and anatomical and chemical differences due to species and growing area make the characterization difficult. Accordingly, research has focused on mathematical models and simulation programs for predicting material characteristics. More data on using many wood species in such models or programs still need to be collected. This study aimed to eliminate these deficiencies for two softwood species grown in Türkiye. In this context, three- and four-point bending tests were performed on 5656 samples from fir (Abies spp.) and black pine (Pinus nigra) species that were collected from 13 regions. A nonlinear material model was generated from the load-deformation data for both species, and the results were found in agreement regarding the bending features of both softwood species. The results show that nonlinear numerical modeling could predict the bending results with significant rates (min. 94%). Additionally, bending characteristics such as limits of proportionality (LOP), and elastic potential were found and compared between and within the species, regions, and test methods. Load-deformation curves showed that the LOP ranged between 40% and 60% of the maximum load, which was higher than the theoretical approach in the standards.