Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium


ÜNSAL ÖZGÜVENÇ T., Wang D., Kijkla P., Kumseranee S., Punpruk S., Mohamed M. E., ...Daha Fazla

BIOPROCESS AND BIOSYSTEMS ENGINEERING, cilt.45, sa.4, ss.669-678, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/s00449-021-02685-6
  • Dergi Adı: BIOPROCESS AND BIOSYSTEMS ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.669-678
  • Anahtar Kelimeler: Microbiologically influenced corrosion, D-Limonene, Biofilm, Biocide, Green chemical, MICROBIOLOGICALLY INFLUENCED CORROSION, SULFATE-REDUCING BACTERIA, 304L STAINLESS-STEEL, ESSENTIAL OILS, PSEUDOMONAS-AERUGINOSA, DESULFOVIBRIO-VULGARIS, ANTIMICROBIAL ACTIVITY, INHIBITION, BEHAVIOR
  • İstanbul Üniversitesi Adresli: Evet

Özet

Microbiologically influenced corrosion (MIC), or microbial biocorrosion, is caused directly by microbial metabolic activities/products or induced by microbial biofilm's damage of a protective film that exposes a solid surface to a pre-existing corrosive environment. MIC causes billions of dollars of losses in various industrial processes, especially in oil and gas and water utilities. The mitigation of problematic industrial microbes typically relies on biocides whose discharges can cause environmental problems. Thus, more effective biocide applications are desired to minimize environmental impact. D-Limonene, a citrus peel oil, generally regarded as safe (GRAS), was used to enhance the popular biodegradable tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide. An oilfield mixed-culture biofilm was grown anaerobically in enriched artificial seawater containing C1018 carbon steel coupons for 7 days at 37 degrees C. One hundred ppm (w/w) D-limonene reduced general heterotrophic bacteria (GHB) and acid-producing bacteria (APB) effectively, leading to 5.4-log and 6.0-log reductions in sessile GHB and APB cell counts, respectively, compared to no treatment control. The combination of 100 ppm D-limonene +100 ppm THPS achieved extra 1.0-log SRB, 0.6-log GHB and 0.5-log APB reductions in sessile cell counts, which led to extra 58% reduction in microbial corrosion mass loss (1.2 vs. 0.5 mg/cm(2)) and extra 30% reductions in maximum pit depth (11.5 vs. 8.1 mu m), compared to 100 ppm THPS-only treatment. Linear polarization resistance and potentiodynamic polarization (PDP) corrosion data supported mass loss and pitting data.