Enhancing Antitumor Efficacy of MUC1 mRNA Nano-Vaccine by CTLA-4 siRNA-Mediated Immune Checkpoint Modulation in Triple Negative Breast Cancer Mice Model


Monfaredan A., Şen S., Fathi N. K., Taştekin D., Hosseininasab A., Bozbey H. U., ...Daha Fazla

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, cilt.26, sa.17, 2025 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 26 Sayı: 17
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/ijms26178448
  • Dergi Adı: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • İstanbul Üniversitesi Adresli: Evet

Özet

Immunotherapy, particularly approaches that combine tumor-specific vaccines with immune checkpoint modulation, represents a promising strategy for overcoming tumor immune evasion. While most mRNA-based cancer vaccines focus solely on antigen delivery, there is a need for platforms that simultaneously enhance antigen presentation and modulate the tumor microenvironment to increase therapeutic efficacy. This study presents a novel dual-nanolipid exosome (NLE) platform that simultaneously delivers MUC1 mRNA and CTLA-4-targeted siRNA in a single system. These endogenous lipid-based nanoparticles are structurally designed to mimic exosomes and are modified with mannose to enable selective targeting to dendritic cells (DCs) via mannose receptors. The platform was evaluated both in vitro and in vivo in terms of mRNA encapsulation efficiency, nanoparticle stability, and uptake by DCs. The co-delivery platform significantly enhanced antitumor immune responses compared to monotherapies. Flow cytometry revealed a notable increase in tumor-infiltrating CD8(+) T cells (p < 0.01), and ELISPOT assays showed elevated IFN-gamma production upon MUC1-specific stimulation. In vivo CTL assays demonstrated enhanced MUC1-specific cytotoxicity. Combined therapy resulted in immune response enhancement compared to vaccine or CTLA-4 siRNA alone. The NLE platform exhibited favorable biodistribution and low systemic toxicity. By combining targeted delivery of dendritic cells, immune checkpoint gene silencing, and efficient antigen expression in a biomimetic nanoparticle system, this study represents a significant advance over current immunotherapy strategies. The NLE platform shows strong potential as a modular and safe approach for RNA-based cancer immunotherapy.