Sensitivity Simulations of Wind-driven Water Circulation in İzmit Bay


Creative Commons License

Mutlu S., Önol B., Ilıcak M., ALTIOK H.

Journal of Marine Science and Engineering, cilt.12, sa.5, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/jmse12050824
  • Dergi Adı: Journal of Marine Science and Engineering
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: MITgcm, sensitivity simulations, upwelling, wind forcing, İzmit Bay
  • İstanbul Üniversitesi Adresli: Evet

Özet

İzmit Bay, a 50 km long inlet at the eastern end of the Marmara Sea, is crucial for the region’s economy, culture, and marine ecosystem. The bay’s water circulation regulates nutrient distribution, stratification, sedimentation, oxygen levels, heat, and pollution levels. It is also influenced by meteorological events, such as short-term moderate to strong wind conditions. This study investigated the sensitivity of İzmit Bay Water Circulation to wind speed, direction, and duration using the MITgcm model with Orlanski boundary conditions and process-oriented modeling. The simulations showed that under weak forcing conditions, seawater temperature, salinity, and stratification do not significantly vary. However, strong forcing and wind speeds (statistically defined by percentiles of observation data) of 4.9 m/s (75%), 6.7 m/s (90%), and 10.1 m/s (99%) generate significant mesoscale and sub-mesoscale processes, depending on the direction. Westerly component winds cause downwelling at the eastern coastline, while easterly component winds bring sub-surface water to the surface. Strong winds from N, NE, and E sectors lead to the rise in lower-layer waters in the western basin, forcing them to overflow through the Hersek Delta sill into the central basin. Overall, severe wind events greater than 4.9 m/s (75%) significantly affect the bay’s hydrography by transforming the upper layer, with a decrease in temperature up to 5 °C and an increase in salinity up to 10 ppt.