Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, cilt.73, sa.1, ss.153-164, 2024 (ESCI)
Let $mathbb{A}=mathbb{R}_{+}times mathbb{R}$ be the affine group with a right Haar measure $mu$, $omega$ be a weight function on $mathbb{A}$ and $Phi$ be a Young function. We characterize the affine continuous mappings on the subsets of $L^Phi(mathbb{A},omega)$. Moreover we show that there exists an isometric isomorphism between the multiplier for the pair $(L^{1}(mathbb{A})cap L^{Phi}(mathbb{A}),L^{1}(mathbb{A}))$ and the space of bounded measures $M(mathbb{A})$.