Performance of Ensemble Learning Classifiers on Malignant-Benign Classification of Pulmonary Nodules


Tartar A., Akan A.

22nd IEEE Signal Processing and Communications Applications Conference (SIU), Trabzon, Türkiye, 23 - 25 Nisan 2014, ss.722-725 identifier identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Doi Numarası: 10.1109/siu.2014.6830331
  • Basıldığı Şehir: Trabzon
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.722-725
  • İstanbul Üniversitesi Adresli: Evet

Özet

Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this study, a novel Computer-aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. Proposed CAD system, providing an important support to radiologists at the diagnosis process of the disease, achieves high classification performance using ensemble learning classifiers.