ENVIRONMENTAL RESEARCH A JOURNAL OF ENVIRONMENTAL MEDICINE AND THE ENVIRONMENTAL SCIENCES, cilt.242, ss.1-9, 2024 (SCI-Expanded)
Microplastic (MP) pollution raises urgent concerns about the environmental well-being and the safety of the food supply for humans. Mussels are essential filter-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution and sedentary lifestyle. There is also a knowledge gap regarding MP levels in commercially-farmed and wild-sourced mussels for human consumption, creating gaps in risk identification for food safety. This study aims to fill this gap in understanding by (a) investigating the presence and abundance of MPs in both wild and aquacultured mussels collected from six different stations in the Sea of Marmara, (b) comparing the levels of MPs between aquacultured and wild mussels, and (c) evaluating the potential health risks associated with the consumption of these contaminated mussels. Polymer types were verified by ATR-FTIR (Attenuated Total Reflectance Fourier Transform- Infrared Spectroscopy), and 6 different polymers have been identified. Among the total 753 identified MPs, the majority (79.8%) were fibers, with the predominant size range (42.4%) falling between 0.1 and 0.5 mm. Consuming wild mussels was associated with a 187.6% higher risk of MP intake compared to aquaculture. A consumer can potentially be exposed to 133.11 to 844.86 MP particles when consuming a 100 g serving of mussels, with risks becoming more significant as portion sizes increase, as is the case in some countries where portions reach 225 g. In this study, detailed information is presented on MP pollution in both wild and aquacultured mussels from Sea of Marmara, providing valuable insights for ensuring food safety, effective management and control of MP pollution in this region.
Microplastic (MP) pollution raises urgent concerns about the environmental well-being and the safety of the food supply for humans. Mussels are essential filter-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution and sedentary lifestyle. There is also a knowledge gap regarding MP levels in commercially-farmed and wild-sourced mussels for human consumption, creating gaps in risk identification for food safety. This study aims to fill this gap in understanding by (a) investigating the presence and abundance of MPs in both wild and aquacultured mussels collected from six different stations in the Sea of Marmara, (b) comparing the levels of MPs between aquacultured and wild mussels, and (c) evaluating the potential health risks associated with the consumption of these contaminated mussels. Polymer types were verified by ATR-FTIR (Attenuated Total Reflectance Fourier Transform- Infrared Spectroscopy), and 6 different polymers have been identified. Among the total 753 identified MPs, the majority (79.8%) were fibers, with the predominant size range (42.4%) falling between 0.1 and 0.5 mm. Consuming wild mussels was associated with a 187.6% higher risk of MP intake compared to aquaculture. A consumer can potentially be exposed to 133.11 to 844.86 MP particles when consuming a 100 g serving of mussels, with risks becoming more significant as portion sizes increase, as is the case in some countries where portions reach 225 g. In this study, detailed information is presented on MP pollution in both wild and aquacultured mussels from Sea of Marmara, providing valuable insights for ensuring food safety, effective management and control of MP pollution in this region.