Comparative in vitro activities of eravacycline in combination with colistin, meropenem, or ceftazidime against various Achromobacter spp. strains isolated from patients with cystic fibrosis


Özer B., Özbek Çelik B.

Journal of Chemotherapy, vol.35, no.8, pp.700-706, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 35 Issue: 8
  • Publication Date: 2023
  • Doi Number: 10.1080/1120009x.2023.2213600
  • Journal Name: Journal of Chemotherapy
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, CAB Abstracts, EMBASE, MEDLINE, Veterinary Science Database
  • Page Numbers: pp.700-706
  • Keywords: Bactericidal, carbapenem, nonfermentative, synergy, time-kill curve
  • Istanbul University Affiliated: Yes

Abstract

The Achromobacter species is an emerging pathogen causing chronic bacterial infections in patients with certain conditions, such as cystic fibrosis (CF), hematologic and solid organ malignancies, renal failure, and certain immune deficiencies. In the present study, we assessed the in vitro bactericidal activities of eravacycline, either alone or in combination with colistin, meropenem, or ceftazidime, using 50 Achromobacter spp. strains isolated from CF patients. We also investigated the synergistic interactions of these combinations using microbroth dilutions against 50 strains of Achromobacter spp. Bactericidal, and we assessed the synergistic effects of the tested antibiotic combinations using the time-kill curve (TKC) technique. Our studies show that meropenem alone is the most effective antibiotic of those tested. Based on the TKCs, we found that eravacycline-colistin combinations display both bactericidal and synergistic activities for 24 h against 5 of the 6 Achromobacter spp. strains, including colistin-resistant ones, at 4xMIC of colistin. Although we did not observe synergistic interactions with eravacycline-meropenem or eravacycline-ceftazidime combinations, we did not observe antagonism with any combination tested. This study’s findings could have important implications for antimicrobial therapy with tested antibiotics.