PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, sa.2, 2019 (SCI-Expanded)
Much of star formation is obscured by dust. For a complete understanding of the cosmic star formation history (CSFH), infrared (IR) census is indispensable. AKARI carried out deep mid-infrared observations using its continuous nine-band filters in the North Ecliptic Pole (NEP) field (5.4 deg(2)). This took a significant amount of the satellite's lifetime, similar to 10% of the entire pointed observations. By combining archival Spitzer (five bands) and WISE (four bands) mid-IR photometry, we have, in total, 18-band mid-IR photometry, which is the most comprehensive photometric coverage in the mid-IR for thousands of galaxies. However, we only had shallow optical imaging (similar to 25.9 AB magnitude) in a small area, 1.0 deg(2). As a result, thousands of AKARI's infrared sources remained undetected in the optical. Using the new Hyper Suprime-Cam on the Subaru telescope, we obtained deep enough optical images of the entire AKARI NEP field in five broad bands (g similar to 27.5 mag). These provided photometric redshift, and thereby IR luminosity, for the previously undetected faint AKARI IR sources. Combined with the accurate mid-IR luminosity measurement, we constructed mid-IR luminosity functions (LFs), and thereby performed a census of dust-obscured CSFH in the entire AKARI NEP field. We have measured rest-frame 8 mu m and 12 mu m LFs, and estimated total infrared LFs at 0.35 < z < 2.2. Our results are consistent with our previous work, but with much reduced statistical errors thanks to the large-area coverage of the new data. We have possibly witnessed the turnover of CSFH at z similar to 2.