AMELX Mutations and Genotype–Phenotype Correlation in X-Linked Amelogenesis Imperfecta


Creative Commons License

Wang S., Zhang H., Lin H., Wang Y., Lin S., Seymen F., ...Daha Fazla

International Journal of Molecular Sciences, cilt.25, sa.11, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 25 Sayı: 11
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/ijms25116132
  • Dergi Adı: International Journal of Molecular Sciences
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: ameloblast, amelogenin, apoptosis, biomineralization, dental enamel, ER stress, lyonization, protein secretion, signal peptide, unfolded protein response
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • İstanbul Üniversitesi Adresli: Evet

Özet

AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop’s classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a “snow-capped” appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype–phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5′ truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3′ truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by “toxic” cellular effects of the mutant proteins.