Environmental DNA metabarcoding reveals diverse phytoplankton assemblages and potentially harmful algal distribution along the urban coasts of Türkiye


Kaleli A., ÖZBAYRAM E. G., AKÇAALAN ALBAY R.

Marine Environmental Research, cilt.199, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 199
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.marenvres.2024.106623
  • Dergi Adı: Marine Environmental Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Anahtar Kelimeler: 18S rRNA, Environmental variables, Illumina® MiSeq™, Next Generation sequencing, Phytoplankton assemblages
  • İstanbul Üniversitesi Adresli: Evet

Özet

Marine phytoplankton are widely used to monitor the state of the water column due to their rapid changes in response to environmental conditions. In this study, we aimed to investigate the coastal phytoplankton assemblages, including bloom-forming species using high-throughput sequencing of 18S rRNA genes targeting the V4 region and their relationship with environmental variables along the Istanbul coasts of the Sea of Marmara. A total of 118 genera belonging to six phyla were detected. Among them, Dinoflagellata (36) and Bacillariophyta (26) were represented with the highest number of genera. According to the relative abundance of DNA reads, the most abundant taxa were Dinoflagellata_phylum (18.1%), Emiliania (8.4%), Biecheleria (8.4), and Noctiluca (8.1%). The ANOSIM test showed that there was a significant temporal difference in the assemblages, while the driving environmental factors were pH, water temperature, and salinity. According to the TRIX index, the trophic state of the coasts was highly mesotrophic and eutrophic. In addition, 45 bloom-forming and HAB taxa were detected and two species of Noctiluca and Emiliania, which frequently cause blooms in the area, were recorded in high abundance. Our results provide insight into the phytoplankton assemblages along the urbanized coastlines by analysing the V4 region of 18S rRNA. This data can support future studies that use both traditional methods and metabarcoding, employing various primers and targeting different genes and regions.