Coating with cationic inulin enhances the drug release profile and in vitro anticancer activity of lecithin-based nano drug delivery systems

Vatansever O., Bahadori F., Bulut S., EROĞLU M. S.


  • Publication Type: Article / Article
  • Publication Date: 2023
  • Doi Number: 10.1016/j.ijbiomac.2023.123955
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, INSPEC, MEDLINE, Veterinary Science Database
  • Istanbul University Affiliated: No


Core-shell structured lipidic nanoparticles (LNPs) were developed using lecithin sodium acetate (Lec-OAc) ionic complex as a core unit and quaternized inulin (QIn) as the shell part. Inulin (In) was modified using glycidyl trimethyl ammonium chloride (GTMAC) as a positively charged shell part and used for coating the negatively surface charged Lec-OAc. The critical micelle concentration (CMC) of the core was determined as 1.047 x 10-4 M, which is expected to provide high stability in blood circulation as a drug-carrying compartment. The amounts of curcumin (Cur) and paclitaxel (Ptx) loaded to LNPs (CurPtx-LNPs), and quaternized inulin-coated LNPs (CurPtx-QIn-LNPs) were optimized to obtain mono-dispersed particles with maximum payload. The total amount of 2.0 mg of the drug mixture (1 mg Cur and 1 mg Ptx) was the optimized quantity for QIn-LNPs and CurPtx-QInLNPs due to the favorable physicochemical properties determined by dynamic light scattering (DLS) studies. This inference was confirmed by differential scanning calorimeter (DSC), and Fourier-transform infrared (FT-IR). SEM and TEM images clearly revealed the spherical shapes of LNPs and QIn-LNPs, and QIn covered the LNPs completely. The cumulative release measurements of Cur and Ptx from CurPtx-QIn-LNPs, along with the kinetic studies, showed a significant decrease in the release period of drug molecules with the effect of the coating. At the same time, Korsmeyer-Peppas was the best diffusion-controlled release model. Coating of the LNPs with QIn increased the cell-internalization of NPs to the MDA-MB-231 breast cancer cell lines, resulting in a better toxicity profile than the empty LNPs.